Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials

The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.




References:
[1] D. F. Williams, Titanium for Medical Applications. In: Brunette, D.M.,
Tengvall, P., Texfor, M., Thomsen, P. (Eds.), Titanium in Medicine.
Springer, New York, 2001.
[2] D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in
medicine. Heidelberg: Springer, 2001.
[3] M. Niinomi, T. Hattori, S. Niwa, "Material Characteristics and
Biocompatibility of Low Rigidity Titanium Alloys for Biomedical
Applications", in: M.J. Yaszemski, D.J. Trantolo, K-U. Lewandrowski,
V. Hasirci, D.E. Altobelli, D.L. Wise (Eds.): Biomaterials in
Orthopedics, Marcel Dekker Inc., New York, 2004, pp. 41-91.
[4] L. Capitanu, J. Onisoru, A. Iarovici, C. Tiganesteanu, "Scratching
mechanisms of hip artificial joints", Tribology in Industry, Vol. 30, no.
1-2, pp. 23-32, 2008.
[5] S.A. Brown, P.J. Hughes, K. Merrit, "In vitro studies of fretting
corrosion of orthopaedic materials", Journal of Orthopaedic Research,
Vol. 6, pp. 572-579, 1988.
[6] D.W. Hoeppner, V. Chandrasekaran, "Fretting in orthopaedic implants:
a review", Wear , Vol. 173, pp.189-197, 1994.
[7] L.M. Rabbe, J. Rieu, A. Lopez, P. Combrade, "Fretting deterioration of
orthopaedic implant materials: search for solution", Clinical Materials,
Vol. 15, pp.221-226, 1994.
[8] M.H. Zhu, Z.B. Cai, W. Li, H.Y. Yu, Z.R. Zhou, "Fretting in prosthetic
devices related to human body", Tribology International, Vol. 42, pp.
1360-1364, 2009.
[9] P.A. Lilley, P.S. Walker, G.W. Blunn, "Wear of titanium by soft tissue",
in: Transactions of the 4th Word Biomaterials Congress, Berlin, 1992,
pp. 227-230.
[10] S. Fayeulle, "Tribological behavior of nitrogen implanted materials",
Wear, Vol.107, pp.61-70, 1986.
[11] I. J. Polmear, Light Alloys, Arnold, London, 1981.
[12] F. Yildiz, A. F. Yetim, A. Alsaran, I. Efeoglu, "Wear and corrosion
behaviour of various surface treated medical grade titanium alloy in biosimulated
environment", Wear, Vol.267, pp.695-701, 2009.
[13] M. Long, H. J. Rack, "Titanium alloys in total joint replacementÔÇö a
materials science perspective, Biomaterials, Vol. 19, pp.1621-1639,
1998.
[14] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, "Ti based
biomaterials, the ultimate choice for orthopaedic implantsÔÇöa review,
Prog. Mater. Sci., Vol. 54, pp.397-425, 2009.
[15] A. Choubey, B. Basu, R. Balasubramaniam, "Tribological behaviour of
Ti-based alloys in simulated body fluid solution at fretting contacts,
Mater. Sci. Eng. A, Vol. 379, pp.234-239, 2004.
[16] Y.L. Hao, M. Niinomi, D. Kuroda, F. Fukunaga, Y.L. Zhou, R. Yang, A.
Suzuki, "Young modulus and mechanical properties of Ti-29Nb-13Ta-
4.6Zr in relation to ╬▒" martensite", Metall. Mater. Trans. A, Vol. 33,
pp.3137-3144, 2002.
[17] H. G¨ulery¨uz, H. Cimeno˘glu," Effect of thermal oxidation on corrosion
and corrosion-wear behavior of a Ti-6Al-4V alloy", Biomaterials, Vol.
25, pp.3325-3333, 2004.
[18] M. Niinomi, D. Kuroda, K.I. Fukunaga, M. Morinaga, Y. Kato, T.
Yashiro, A. Suzuki, "Corrosion wear fracture of new β type biomedical
titanium alloys", Mater. Sci. Eng. A, Vol. 263, pp.193-199, 1999.
[19] J. L. Gilbert, C. A. Buckley, E. P. Lautenschlager, "Titanium oxide film
fracture and repassivation: The effect of potential, pH and aeration", In:
S. A. Brown, J. E. Lemons, editors, Medical applications of titanium
and its alloys, the material and biological issues, ASTM STP 1272.
Philadelphia: ASTM, 1996. p. 199-214.
[20] J. Komotori, B. J. Lee, H. Dong, P. A. Dearnley, "Corrosion response of
surface engineered titanium alloys damaged by prior abrasion", Wear,
Vol.88-98, pp.1-11, 2001.
[21] F. Galliano, E. Galvanetto, S. Mischler, D. Landolt, "Tribocorrosion
behavior of plasma nitrided Ti-6Al-4V alloy in neutral NaCl solution",
Surf Coat Technol, Vol.145, pp.121-131, 2001.
[22] N. J. Hallab, S. Anderson, T. Stafford, T. Glant, J. J. Jacobs,
"Lymphocyte responses in patients with total hip arthroplasty", J Orthop
Res, Vol.23, no.2, pp.384-391, 2005.
[23] T. Yamamoto, N. Kobayashi, K. Maruyama, M. Nakazawa, "Fretting
fatigue properties of Ti-6Al-4V alloy in pseudo-body fluid and
evaluation of biocompatibility by cell culture method", J. Japan. Inst.
Metals, Vol. 59, no.4, pp. 463-470, 1995.
[24] P. Kovacs, J. A. Davidson, "Chemical and electrochemical aspects of
biocompatibility of titanium and its alloys", In: S. A. Brown, J. E.
Lemons, editors, Medical applications of titanium and its alloys: the
material and biological issues, ASTM STP 1272. Philadelphia: ASTM,
pp. 163-77, 1996.
[25] M. Niinomi, "Mechanical properties of biomedical titanium alloys",
Mater. Sci. Eng. A, Vol. 243, pp.231-236, 1998.
[26] G. Manivasagam, U.K. Mudali, R. Asokamani, B. Raj, "Corrosion and
microstructural aspects of titanium and its alloys as orthopaedic
devices", Corros. Rev., Vol. 21, pp.125-159, 2003.
[27] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo,
Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for
biomedical applications, Wear 257 (2004) 869-876.
[28] G. Lutjering and J. Williams, Titanium: Engineering materials and
processes, 2nd edition, New York, Springer-Verlag, 2003.
[29] C. Leyens, M. Peters, Titanium and Titanium Alloys - Fundamentals and
Applications, KgaA: Weinheim, Germany, WILEY - VCH Verlag
GmbH & Co, 2003.
[30] M. Donachie, Introduction to Titanium and Titanium Alloys, Source
Book. ASM International, 1982.
[31] J. William, J. Chesnutt, Titanium Alloys: Thermomechanical Treatment,
in Encyclopedia of Materials Science and Engineering, M.B. Bever,
Editor, Pergamon Press. USA, 1986.
[32] J. Matthew. J. Donachie, Titanium A Technical Guide, 2nd edition,
Ohio, USA: ASM International, Materials Park, 2000.
[33] P.J. Bania, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Titanium Alloys
in the 1990-s, The Mineral, Metals & Materials Society, Warrendale,
PA, 1993, pp. 3-14.
[34] R.W. Schutz, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Beta Titanium
Alloys in the 1990-s, The Mineral, Metals & Materials Society,
Warrendale, PA, 1993, pp. 75-91.
[35] D.M. Gordina, T. Glorianta, G. Nemtoib, "Synthesis, structure and
electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new
biomaterial", Mater. Lett., Vol. 59, pp.2959, 2005.
[36] M. A. Khan, R.L. Williams, and D.F. Williams, "The Corrosion
behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein
solutions", Biomaterials, Vol. 20, pp.631-637, 1999.
[37] K.L. Wapner, "Implications of metallic corrosion in total knee
arthroplasty", Clin. Orthop. Relat. Res., Vol. 271, p.12-20, 1991.
[38] S. Tamilselvi, V. Raman, and N. Rajendran, "Corrosion behaviour of Ti-
6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution
by electrochemical impedance spectroscopy", Electrochim. Acta, Vol.
52, p.839, 2006.
[39] Y. Okazaki, Y. Ito, T. Tateishi, A. Ito, "Effect of heat treatment on
microstructure and mechanical properties of new titanium alloys for
surgical implantation", J 834 Jpn Inst Met, Vol. 59, pp.108-115, 1995.
[40] CRM. Afonso, GT. Aleixo, AJ. Ramirez, R. Caram, "Influence of
cooling rate on microstructure of Ti-Nb alloy for orthopedic implants",
Mater Sci Eng C, Vol.889, pp.908-913, 2007.
[41] Y. Al-Zain, HY. Kim, H. Hosoda, TH. Nam, S. Miyazaki, "Shape
memory properties of Ti-Nb-Mo biomedical alloys", Acta Mater,
Vol.58, pp.4212-4223, 2010.
[42] D. Ping, Y. Mitarai, F. Yin, "Microstructure and shape memory behavior
of a Ti- 30Nb-3Pd alloy", Scripta Mater, Vol.52, pp.1287-1291, 2005.
[43] Q. Li, M. Niinomi, M. Nakai, Z. Cui, S. Zhu, X. Yang , "Improvements
in the super-elasticity and change in deformation mode of b-type
TiNb24Zr2 alloys caused by aging treatments", Metall Mater Trans A,
Vol.42, pp.2843-2849, 2011.
[44] K. Miura, N. Yamada, S. Hanada, TK. Jung, E. Itoi, "The bone tissue
compatibility of a new Ti-Nb-Sn alloy with a low Young-s modulus",
Acta Biomater, Vol.7, pp.2320-2326, 2011.
[45] Z. Guo, J. Fu, YQ. Zhang, YY. Hu, ZG. Wu, L. Shi, M. Sha, SJ. Li, YL.
Hao, R. Yang, "Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails
on fractured bone", Mater Sci Eng C, Vol.29, pp.963-968, 2009.
[46] WF. Cui, AH. Guo, "Microstructure and properties of biomedical
TiNbZrFe β-titanium alloy under aging conditions", Mater Sci Eng A,
Vol.527, pp.258-262, 2009.
[47] J. M├ílek, JF. Hnilica, J. Vesely╦å, B. Smola, S. Bartakova, J. Vanék, "The
influence of chemical composition and thermo-mechanical treatment on
Ti-Nb-Ta alloys", Mater Des, Vol.35, pp.731-740, 2012.
[48] Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang, " Influence of oxygen
content on microstructure and mechanical properties of Ti-Nb-Ta-Zr
alloy, Mater Des, Vol.32, pp.2934-2939, 2011.
[49] LD. Zardiackas, DW. Mitchell, JA. Disegi, "Characterization of Ti-
15Mo beta titanium alloy for orthopedic implant", In: Brown SA,
Lemons JE, editors, Medical applications of titanium and its alloys,
ASTM STP 1272. West Conshohocken, PA: ASTM International, pp.
60-75, 1996.
[50] DP. Cao, "Mechanical and electrochemical characterization of Ti-
12Mo-5Zr alloy for biomedical application", J. Alloys Compd, Vol.509,
pp.8235-8238, 2011.
[51] KK. Wang, LJ. Gustavson, JH. Dumbleton, "Microstructure and
properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed
for surgical implants", In: Brown SA, Lemons JE, editors, Medical
applications of titanium and its alloys, ASTMSTP 1272.West
Conshohocken, PA: ASTM International, pp.76-87, 1996.
[52] D. Kuroda, H. Kawasaki, S. Hiromoto, T. Hanawa, "Development of
new Ti-Fe-Ta and Ti-Fe-Ta-Zr system alloys for biomedical
applications", Mater Sci Eng C, Vol.25, pp.312-320, 2005.
[53] Ljerka Slokar, Tanja Matkovic', Prosper Matkovic', "Alloy design and
property evaluation of new Ti-Cr-Nb alloys", Materials and Design,
Vol.33, pp.26-30, 2012.
[54] Y. Kasano, T. Inamura, H. Kanetaka, S. Miyazaki, H. Hosoda, "Phase
constitution and mechanical properties of Ti-(Cr, Mn)-Sn biomedical
alloys", Mater Sci Forum, Vol.654-656, pp.2118-2121, 2010.
[55] Yu Zhen-tao, Zheng Yu-feng, Niu Jin-long, Huangfu Qiang, Zhang Yafeng,
Yu Sen, "Microstructure and wear resistance of Ti-3Zr-2Sn-3Mo-
15Nb (TLM) alloy", Trans Nonferrous Met.Soc.China, Vol.17, pp.495-
499, 2007.
[56] E. Eisenbarth, Velten D, Muller M, Thull R, Breme J. Biocompatibility
of β stabilizing elements of titanium alloys. Biomaterials 2004(25):5705.
[57] P. Majumdar, S. B. Singh, M. Chakraborty, "Wear response of heattreated
Ti-13Zr-13Nb alloy in dry condition and simulated body fluid",
Wear, Vol.264, pp.1015-1025, 2008.
[58] I. Cvijovic'-Alagic', S. Mitrovic', Z. Cvijovic', Ð. Veljovic', M. Babic,
M. Rakin, "Influence of the heat treatment on the tribological
characteristics of the Ti-based alloy for biomedical applications,
Tribology in industry, Vol.31, no.3&4, 2009.
[59] I. Cvijovic'-Alagic', Z. Cvijovic', S. Mitrovic', M. Rakin , Ð. Veljovic',
and M. Babic " Tribological behaviour of orthopaedic Ti-13Nb-13Zr and
Ti-6Al-4V Alloys", Tribol Lett,Vol.40, pp.59-70, 2010.
[60] Valiev RZ, Langdon TG, " Principles of equal-channel angular pressing
as a processing tool for grain refinement", Prog Mater Sci., Vol. 51,
pp.881-981, 2006.
[61] PB. Berbon, M. Furukawa, Z. Horita, M. Nemoto, TG. Langdon, "Infl
uence of pressing speed on microstructural development in equalchannel
angular pressing", Metall Mater Trans, Vol.30A, pp.1989-1997, 1999.
[62] P. La, J. Ma, YT. Zhu, J. Yang, W. Liu, Q. Xue, RZ. Valiev, " Drysliding
tribological properties of ultrafine-grained Ti prepared by severe
plastic deformation", Acta Mater, Vol. 53, pp.5167-5173, 2005.