Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL)

Biopolymers have gained much attention as ecofriendly alternatives to petrochemical-based plastics because they are biodegradable and can be produced from renewable feedstocks. One class of biopolyester with many potential environmentally friendly applications is polylactic acid (PLA) and polycaprolactone (PCL). The PLA/PCL biodegradable copolyesters were synthesized by bulk ring-opening copolymerization of successively added Llactide (LL) and ε-caprolactone (CL) in the presence of toluene, using 1-hexanol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Reaction temperature, reaction time and amount of catalyst were evaluated to obtain optimum reaction conditions. The results showed that the %conversion increased with increases in reaction temperature and reaction time, but after a critical amount of catalyst was reached the %conversion decreased. The yield of PLA/PCL biopolymer achieved 98.02% at the reaction temperature 160 °C, amount of catalyst 0.3 mol% and reaction time of 48 h. In addition, the thermal properties of the product were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM

Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.

Simulating Flow Transients in Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber

In water pipeline systems, the flow control is an integrated part of the operation, for instance, opening and closing the valves, starting and stopping the pumps, when these operations very quickly performed, they shall cause the hydraulic transient phenomena, which may cause pump and, valve failures and catastrophic pipe ruptures. Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems. Transient control has become an essential requirement for ensuring safe operation of water pipeline systems. An accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic methods. This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Also, it provides the influence of using the protection devices to protect the pipeline systems from damaging due to the gain pressure which occur in the transient state. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Strengthening of RC Beams Containing Large Opening at Flexure with CFRP laminates

This paper presents the study of strengthening R/C beams with large circular and square opening located at flexure zone by Carbon Fiber Reinforced Polymer (CFRP) laminates. A total of five beams were tested to failure under four point loading to investigate the structural behavior including crack patterns, failure mode, ultimate load and load deflection behaviour. Test results show that large opening at flexure reduces the beam capacity and stiffness; and increases cracking and deflection. A strengthening configuration was designed for each un-strengthened beams based on their respective crack patterns. CFRP laminates remarkably restore the beam capacity of beam with large circular opening at flexure location while 10% re-gain of beam capacity with square opening. The use of CFRP laminates with the designed strengthening configuration could significantly reduce excessive cracking and deflection and increase the ultimate capacity and stiffness of beam.

Effect of Initial Conditions on Aerodynamic and Acoustic Characteristics of High Subsonic Jets from Sharp Edged Circular Orifice

The present work involves measurements to examine the effects of initial conditions on aerodynamic and acoustic characteristics of a Jet at M=0.8 by changing the orientation of sharp edged orifice plate. A thick plate with chamfered orifice presented divergent and convergent openings when it was flipped over. The centerline velocity was found to decay more rapidly for divergent orifice and that was consistent with the enhanced mass entrainment suggesting quicker spread of the jet compared with that from the convergent orifice. The mixing layer region elucidated this effect of initial conditions at an early stage – the growth was found to be comparatively more pronounced for the divergent orifice resulting in reduced potential core size. The acoustic measurements, carried out in the near field noise region outside the jet within potential core length, showed the jet from the divergent orifice to be less noisy. The frequency spectra of the noise signal exhibited that in the initial region of comparatively thin mixing layer for the convergent orifice, the peak registered a higher SPL and a higher frequency as well. The noise spectra and the mixing layer development suggested a direct correlation between the coherent structures developing in the initial region of the jet and the noise captured in the surrounding near field.

The Active Imagination Technique for Bruxism Treatment

The research purpose was to evaluate the effect of Active Imagination Technique (AIT) for bruxism treatment. This project was approved by the Ethics Committee on Human Research (CAAE: 05619512.9.0000.0109). Twenty-one volunteers using interocclusal splint completed the study. Initially they filled in a questionnaire about their condition, composed of objective questions on signs and symptoms. Following they were underwent asingle session of AIT. After 15 days, the volunteers met again the same initial questionnaire. The results were compared and showed that the vast majority had pain symptoms, difficulty opening the mouth, pain when chewing, reduced, some of the participants abandoned the interocclusal splint during the evaluate period. It is concluded that the technique can be used in bruxism treatment. Results seem to be promising and demonstrates the need of highlighting Active Imagination Technique since it points a possibility of bruxism cure and that is unprecedented.

Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study

When the characteristic length of an elastic solid is down to the nanometer level, its deformation behavior becomes size dependent. Surface energy /surface stress have recently been applied to explain such dependency. In this paper, the effect of strain-independent surface stress on the deformation of an isotropic elastic solid containing a nanosized elliptical hole is studied by the finite element method. Two loading cases are considered, in the first case, hoop stress along the rim of the elliptical hole induced by pure surface stress is studied, in the second case, hoop stress around the elliptical opening under combined remote tension and surface stress is investigated. It has been shown that positive surface stress induces compressive hoop stress along the hole, and negative surface stress has opposite effect, maximum hoop stress occurs near the major semi-axes of the ellipse. Under combined loading of remote tension and surface stress, stress concentration around the hole can be either intensified or weakened depending on the sign of the surface stress.

Active Control for Reduction of Noise Passing through Enclosure and Optimization of Microphone Position

In this study, noise characteristics of structure were analyzed in an effort to reduce noise passing through an opening of an enclosure surrounding the structure that generates noise. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, noise characteristics of structure were analyzed and feed-forward noise control was performed using simulation in order to reduce noise passing through the opening of enclosure, which surrounds a structure generating noise. We then implemented a feed-forward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. Good control performances were achieved using the minimum number of microphones arranged an optimal placement.

Nonlinear Dynamics of Cracked RC Beams under Harmonic Excitation

Nonlinear response behaviour of a cracked RC beam under harmonic excitation is analysed to investigate various instability phenomena like, bifurcation, jump phenomena etc. The nonlinearity of the system arises due to opening and closing of the cracks in the RC beam and is modelled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu-s scheme. The periodic solutions obtained by the IHBC method are compared with these obtained by the numerical integration of the equation of motion. Characteristics of solutions fold bifurcation, jump phenomena and from stable to unstable zones are identified.

Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes

The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.

Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell

This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.

Studying Mistaken Theory of Calendar Function of Iran-s Cross-Vaults

After presenting the theory of calendar function of Iran-s cross-vaults especially “Niasar" cross-vault in recent years, there has been lots of doubts and uncertainty about this theory by astrologists and archaeologists. According to this theory “Niasar cross-vault and other cross-vaults of Iran has calendar function and are constructed in a way that sunrise and sunset can be seen from one of its openings in the beginning and middle of each season of year". But, mentioning historical documentaries we conclude here that the theory of calendar function of Iran-s cross-vaults does not have any strong basis and individual cross-vaults had only religious function in Iran.

Enhanced Conference Organization Based On Correlation of Web Information and Ontology Based Expertise Search

From the importance of the conference and its constructive role in the studies discussion, there must be a strong organization that allows the exploitation of the discussions in opening new horizons. The vast amount of information scattered across the web, make it difficult to find experts, who can play a prominent role in organizing conferences. In this paper we proposed a new approach of extracting researchers- information from various Web resources and correlating them in order to confirm their correctness. As a validator of this approach, we propose a service that will be useful to set up a conference. Its main objective is to find appropriate experts, as well as the social events for a conference. For this application we us Semantic Web technologies like RDF and ontology to represent the confirmed information, which are linked to another ontology (skills ontology) that are used to present and compute the expertise.

Effects of Various Substrate Openings for Electronic Cooling under Forced and Natural Convection

This study experimentally investigates the heat transfer effects of forced convection and natural convection under different substrate openings design. A computational fluid dynamics (CFD) model was established and implemented to verify and explain the experimental results and heat transfer behavior. It is found that different opening position will destroy the growth of the boundary layer on substrates to alter the cooling ability for both forced under low Reynolds number and natural convection. Nevertheless, having too many opening may reduce heat conduction and affect the overall heat transfer performance. This study provides future researchers with a guideline on designing and electronic package manufacturing.

A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper

Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.

Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Investigation of Nickel as a Metal Substitute of Palladium Supported on HBeta Zeolite for Waste Tire Pyrolysis

Pyrolysis of waste tire is one of alternative technique to produce petrochemicals, such as light olefins, mixed C4, and monoaromatics. Noble metals supported on acid zeolite catalysts were reported as potential catalysts to produce the high valuable products from waste tire pyrolysis. Especially, Pd supported on HBeta gave a high yield of olefins, mixed C4, and mono-aromatics. Due to the high prices of noble metals, the objective of this work was to investigate whether or not a non-noble Ni metal can be used as a substitute of a noble metal, Pd, supported on HBeta as a catalyst for waste tire pyrolysis. Ni metal was selected in this work because Ni has high activity in cracking, isomerization, hydrogenation and the ring opening of hydrocarbons Moreover, Ni is an element in the same group as Pd noble metal, which is VIIIB group, aiming to produce high valuable products similarly obtained from Pd. The amount of Ni was varied as 5, 10, and 20% by weight, for comparison with a fixed 1 wt% Pd, using incipient wetness impregnation. The results showed that as a petrochemical-producing catalyst, 10%Ni/HBeta performed better than 1%Pd/HBeta because it did not only produce the highest yield of olefins and cooking gases, but the yields were also higher than 1%Pd/HBeta. 5%Ni/HBeta can be used as a substitute of 1%Pd/HBeta for similar crude production because its crude contains the similar amounts of naphtha and saturated HCs, although it gave no concentration of light mono-aromatics (C6-C11) in the oil. Additionally, 10%Ni/HBeta that gave high olefins and cooking gases was found to give a fairly high concentration of the light mono-aromatics in the oil.

Mathematical Approach for Large Deformation Analysis of the Stiffened Coupled Shear Walls

Shear walls are used in most of the tall buildings for carrying the lateral load. When openings for doors or windows are necessary to be existed in the shear walls, a special type of the shear walls is used called "coupled shear walls" which in some cases is stiffened by specific beams and so, called "stiffened coupled shear walls". In this paper, a mathematical method for geometrically nonlinear analysis of the stiffened coupled shear walls has been presented. Then, a suitable formulation for determining the critical load of the stiffened coupled shear walls under gravity force has been proposed. The governing differential equations for equilibrium and deformation of the stiffened coupled shear walls have been obtained by setting up the equilibrium equations and the moment-curvature relationships for each wall. Because of the complexity of the differential equation, the energy method has been adopted for approximate solution of the equations.

Comparative Study of Sustainable Architecture in Stairway-like Ushtobin Village, Iran

Stairway Ushtobin Village is one of the five villages with original and sustainable architecture in Northwest of Iran along the border of Armenia, which has been able to maintain its environment and sustainable ecosystem. Studying circulation, function and scale (grand, medium and minor) of space, ratio of full and empty spaces, number and height of stairs, ratio of compound volume to luxury spaces, openings, type of local masonry (stone, mud, wood) and form of covering elements have been carried out in four houses of this village comparatively as some samples in this article, and furthermore, this article analyzes that the architectural shapes and organic texture of the village meet the needs of cold and dry climate. Finally, some efficient plans are offered suiting the present needs of the village to have a sustainable architecture.

A Decision Support Model for Bank Branch Location Selection

Location selection is one of the most important decision making process which requires to consider several criteria based on the mission and the strategy. This study-s object is to provide a decision support model in order to help the bank selecting the most appropriate location for a bank-s branch considering a case study in Turkey. The object of the bank is to select the most appropriate city for opening a branch among six alternatives in the South-Eastern of Turkey. The model in this study was consisted of five main criteria which are Demographic, Socio-Economic, Sectoral Employment, Banking and Trade Potential and twenty one subcriteria which represent the bank-s mission and strategy. Because of the multi-criteria structure of the problem and the fuzziness in the comparisons of the criteria, fuzzy AHP is used and for the ranking of the alternatives, TOPSIS method is used.