An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Effects of Engine Parameters and Fuel Compositions on Ignition Timing and Emission Characteristics of HCCI Engine

In this research, the effects of the engine parameters like compression ratios and steam injection on igniting timing and emission characteristics have been investigated numerically. The in-cylinder temperature and pressure at four different compression ratios have been compared with numerical results, and they show a good agreement with the published data. Two different fuels have been used in this study: Isooctane (IC8H18), and ethanol (C2H5OH). The increasing of the compression ratio (CR) advances the ignition timing, decreases the burn duration and increases the temperature and the pressure. The injection of water vapor lower than 40% decreased the peak temperature and slowed the combustion rate which leads to a lower NOx emission.

A Computational Study into the Effect of Design Parameters on Ignition Timing and Emission Characteristics of HCCI Engine in Internal Combustion Engines Fuelled with Isooctane

In order to understand the auto-ignition process in a HCCI engine better, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the inlet pressure, and the compression ratio were varied and their influence on the ignition delays and emission characteristics were studied. The inlet temperature was changed from 400 K to 460 K (in step of 15 K), the inlet pressure from 0.9 to 3 atm, while the compression ratio varied from 15 to 23. The fuel that was investigated is isooctane. The inlet temperature, the inlet pressure, and the compression ratio appeared to decrease the ignition delays, with the inlet pressure having the least influence and the compression ratio the most. The effect of these parameters on emissions’ characteristics were also investigated. Results indicate that increasing the compression ratio results in increasing the concentration of all the species.

Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPGCNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 10^0 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Combustion and Emission Characteristics in a Can-type Combustion Chamber

Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature.

Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Influence of Type of Burner on NOx Emission Characteristics from Combustion of Palm Methyl Ester

Palm methyl ester (PME) is one of the alternative biomass fuels to liquid fossil fuels. To investigate the combustion characteristics of PME as an alternative fuel for gas turbines, combustion experiments using two types of burners under atmospheric pressure were performed. One of the burners has a configuration making strong non-premixed flame, whereas the other has a configuration promoting prevaporization of fuel droplets. The results show that the NOx emissions can be reduced by employing the latter burner without accumulation of soot when PME is used as a fuel. A burner configuration promoting prevaporzation of fuel droplets is recommended for PME.

Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Improvement in Performance and Emission Characteristics of a Single Cylinder S.I. Engine Operated on Blends of CNG and Hydrogen

This paper presents the experimental results of a single cylinder Enfield engine using an electronically controlled fuel injection system which was developed to carry out exhaustive tests using neat CNG, and mixtures of hydrogen in compressed natural gas (HCNG) as 0, 5, 10, 15 and 20% by energy. Experiments were performed at 2000 and 2400 rpm with wide open throttle and varying the equivalence ratio. Hydrogen which has fast burning rate, when added to compressed natural gas, enhances its flame propagation rate. The emissions of HC, CO, decreased with increasing percentage of hydrogen but NOx was found to increase. The results indicated a marked improvement in the brake thermal efficiency with the increase in percentage of hydrogen added. The improved thermal efficiency was clearly observed to be more in lean region as compared to rich region. This study is expected to reduce vehicular emissions along with increase in thermal efficiency and thus help in reduction of further environmental degradation.

A Study on the Effect of Valve Timing on the Combustion and Emission Characteristics for a 4-cylinder PCCI Diesel Engine

PCCI engines can reduce NOx and PM emissions simultaneously without sacrificing thermal efficiency, but a low combustion temperature resulting from early fuel injection, and ignition occurring prior to TDC, can cause higher THC and CO emissions and fuel consumption. In conclusion, it was found that the PCCI combustion achieved by the 2-stage injection strategy with optimized calibration factors (e.g. EGR rate, injection pressure, swirl ratio, intake pressure, injection timing) can reduce NOx and PM emissions simultaneously. This research works are expected to provide valuable information conducive to a development of an innovative combustion engine that can fulfill upcoming stringent emission standards.

Experimental Studies on the Combustion and Emission Characteristics of a Diesel Engine Fuelled with Used Cooking Oil Methyl Esterand its Diesel Blends

Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analysed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution.

Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends

The increased number of automobiles in recent years has resulted in great demand for fossil fuel. This has led to the development of automobile by using alternative fuels which include gaseous fuels, biofuels and vegetables oils as fuel. Energy from biomass and more specific bio-diesel is one of the opportunities that could cover the future demand of fossil fuel shortage. Biomass in the form of cashew nut shell represents a new energy source and abundant source of energy in India. The bio-fuel is derived from cashew nut shell oil and its blend with diesel are promising alternative fuel for diesel engine. In this work the pyrolysis Cashew Nut Shell Liquid (CNSL)-Diesel Blends (CDB) was used to run the Direct Injection (DI) diesel engine. The experiments were conducted with various blends of CNSL and Diesel namely B20, B40, B60, B80 and B100. The results are compared with neat diesel operation. The brake thermal efficiency was decreased for blends of CNSL and Diesel except the lower blends of B20. The brake thermal efficiency of B20 is nearly closer to that of diesel fuel. Also the emission level of the all CNSL and Diesel blends was increased compared to neat diesel. The higher viscosity and lower volatility of CNSL leads to poor mixture formation and hence lower brake thermal efficiency and higher emission levels. The higher emission level can be reduced by adding suitable additives and oxygenates with CNSL and Diesel blends.

Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture

The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.

The Pack-Bed Sphere Liquid Porous Burner

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Investigation on Performance and Emission Characteristics of CI Engine Fuelled with Producer Gas and Esters of Hingan (Balanites)Oil in Dual Fuel Mode

Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the virgin biomass obtained from hingan shell is used as the feedstock for gasifier to generate producer gas. The gasifier-engine system is operated on diesel and on esters of vegetable oil of hingan in liquid fuel mode operation and then on liquid fuel and producer gas combination in dual fuel mode operation. The performance and emission characteristics of the CI engine is analyzed by running the engine in liquid fuel mode operation and in dual fuel mode operation at different load conditions with respect to maximum diesel savings in the dual fuel mode operation. It was observed that specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine using diesel or hingan oil methyl ester (HOME) is higher than that of dual fuel mode operation. A diesel replacement in the tune of 60% in dual fuel mode is possible with the use of hingan shell producer gas. The emissions parameters such CO, HC, NOx, CO2 and smoke are higher in the case of dual fuel mode of operation as compared to that of liquid fuel mode.

Performance Evaluation of a Diesel Engine Fueled with Methyl Ester of shea Butter

Biodiesel as an alternative fuel for diesel engines has been developed for some three decades now. While it is gaining wide acceptance in Europe, USA and some parts of Asia, the same cannot be said of Africa. With more than 35 countries in the continent depending on imported crude oil, it is necessary to look for alternative fuels which can be produced from resources available locally within any country. Hence this study presents performance of single cylinder diesel engine using blends of shea butter biodiesel. Shea butter was transformed into biodiesel by transesterification process. Tests are conducted to compare the biodiesel with baseline diesel fuel in terms of engine performance and exhaust emission characteristics. The results obtained showed that the addition of biodiesel to diesel fuel decreases the brake thermal efficiency (BTE) and increases the brake specific fuel consumption (BSFC). These results are expected due to the lower energy content of biodiesel fuel. On the other hand while the NOx emissions increased with increase in biodiesel content in the fuel blends, the emissions of carbon monoxide (CO), un-burnt hydrocarbon (UHC) and smoke opacity decreased. The engine performance which indicates that the biodiesel has properties and characteristics similar to diesel fuel and the reductions in exhaust emissions make shea butter biodiesel a viable additive or substitute to diesel fuel.