Graphene/h-BN Heterostructure Interconnects

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.

Properties of Al2O3 – hBN Composites

Alumina matrix composites with addition of hexagonal boron nitride (hBN), acting as solid lubricant, were produced. Main purpose of solid lubricants is to dispose the necessity of using cooling lubricants in machining process. Hot pressing was used as a consolidating process for Al2O3-x%wt.hBN (x=1/ 2,5/ 5 /7,5 /10) composites. Properties of sinters such as relative density, hardness, Young-s modulus and fracture toughness were examined. Obtained samples characterize by high relative density. Hardness and fracture toughness values allow the use of alumina – hBN composites for machining steels even in hardened condition. However it was observed that high weight content of hBN can negatively influence the mechanical properties of composites.