Some Immunological Characteristics of Tick- Borne Encephalitis in Perm Region

It is shown that the relationship of tick-borne encephalitis virus with the human body comes in two ways, the development of acute infection with the outcome in convalescence and long stay by the virus in the body, its persistence in the nervous tissue with periodic reactivation and prolonged circulating immunoglobulin M. In spite of the fact that tick-borne encephalitis virus has a tropism for nerve tissue, involvement in the process of blood cells is an integral component of the infection. Comprehensive study of the relation of factors of innate and adaptive immunity in the tick-borne encephalitis providing insight into the features of chronic disease.

On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process

The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.

The Effect of Variable Incubation Temperatures on Hatchability and Survival of Goldlined Seabream, Rhabdosargus sarba (Forsskål,1775) Larvae

The effect of varying holding temperature on hatching success, occurrence of deformities and mortality rates were investigated for goldlined seabream eggs. Wild broodstock (600 g) were stocked at a 2:1 male-female ratio in a 2 m3 fiberglass tank supplied with filtered seawater (37 g L-1 salinity, temp. range 24±0.5 oC [day] and 22±1 oC [night], DO2 in excess of 5.0mg L-1). Females were injected with 200 IU kg-1 HCG between 08.00 and 10.00 h and returned to tanks to spawn following which eggs were collected by hand using a 100μm net. Fertilized eggs at the gastrulation stage (120 L-1) were randomly placed into one of 12 experimental 6 L aerated (DO2 5 mg L-1) plastic containers with water temperatures maintained at 24±0.5 oC (ambient), 26±0.5 oC, 28± 0.5 oC and 30±0.5 oC using thermostats. Each treatment was undertaken in triplicate using a 12:12 photophase:scotophase photoperiod. No differences were recorded between eggs reared at 24 and 26 oC with respect to viability, deformity, mortality or unhatched egg rates. Increasing temperature reduced the number of viable eggs with those at 30 oC returning poorest performance (P < 0.05). Mortality levels were lowest for eggs incubated at 24 and 26 oC. The greatest level of deformities recorded was that for eggs reared at 28 oC.

Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems

Silicon is a beneficial element for plant growth. It helps plants to overcome multiple stresses, alleviates metal toxicity and improves nutrient imbalance. Field experiment was conducted as split-split plot arranged in a randomized complete block design with four replications. Irrigation system include continues flooding and deficit as main plots and nitrogen rates N0, N46, N92, and N138 kg/ha as sub plots and silicon rates Si0 & Si500 kg/ha as sub-subplots. Results indicate that grain yield had not significant difference between irrigation systems. Flooding irrigation had higher biological yield than deficit irrigation whereas, no significant difference in grain and straw yield. Nitrogen application increased grain, biological and straw yield. Silicon application increased grain, biological and straw yield but, decreased harvest index. Flooding irrigation had higher number of total tillers / hill than deficit irrigation, but deficit irrigation had higher number of fertile tillers / hill than flooding irrigation. Silicon increased number of filled spikelet and decreased blank spikelet. With high nitrogen application decreased 1000-grain weight. It can be concluded that if the nitrogen application was high and water supplied was available we could have silicon application until increase grain yield.

Aggressive Interactions in Hospital Emergency Units

International literature emphasizes on the concern regarding the phenomenon of aggression in hospital. This paper focuses on the reality of aggressive interactions reigning within an emergency triage involving three chaps of protagonists: the professionals, the patients and their carers. The data collection was made from a grid of observation, in which the various variables exposed in the literature were integrated. They observations took place around the clock, for three weeks, at the rate of one week a month. In this research 331 aggressive interactions have been listed and analyzed by means of the software SPSS. This research is one of the very few continuous observation surveys in the literature. It shows the various human factors at play in the emergence of aggressive interaction. The data may be used both for taking steps in primary prevention, thanks to the analysis of interaction modes, and in secondary prevention by integrating the useful results in situational prevention.

Influence of Adaptation Gain and Reference Model Parameters on System Performance for Model Reference Adaptive Control

This article presents a detailed analysis and comparative performance evaluation of model reference adaptive control systems. In contrast to classical control theory, adaptive control methods allow to deal with time-variant processes. Inspired by the works [1] and [2], two methods based on the MIT rule and Lyapunov rule are applied to a linear first order system. The system is simulated and it is investigated how changes to the adaptation gain affect the system performance. Furthermore, variations in the reference model parameters, that is changing the desired closed-loop behaviour are examinded.

The Effectiveness of Ultrasound Treatment on the Germination Stimulation of Barley Seed and its Alpha-Amylase Activity

In the present study, the effects of ultrasound as emerging technology were investigated on germination stimulation, amount of alpha-amylase activity on dry barley seeds before steeping stage of malting process. All experiments were carried out at 20 KHz on the ultrasonic generator in 3 different ultrasonic intensities (20, 60 and 100% setting from total power of device) and time (5, 10 and 15 min) at constant temperature (30C). For determining the effects of these parameters on enzyme the Fuwa method assay based on the decreased staining value of blue starch–iodine complexes employed for measurement an activity. The results of these assays were analyzed by Qualitek4 software using the Taguchi statistical method to evaluate the factor-s effects on enzyme activity. It has been found that when malting barley is irradiated with an ultrasonic power, a stimulating effect occurs as to the enzyme activity.

Evaluation of Linear and Geometrically Nonlinear Static and Dynamic Analysis of Thin Shells by Flat Shell Finite Elements

The choice of finite element to use in order to predict nonlinear static or dynamic response of complex structures becomes an important factor. Then, the main goal of this research work is to focus a study on the effect of the in-plane rotational degrees of freedom in linear and geometrically non linear static and dynamic analysis of thin shell structures by flat shell finite elements. In this purpose: First, simple triangular and quadrilateral flat shell finite elements are implemented in an incremental formulation based on the updated lagrangian corotational description for geometrically nonlinear analysis. The triangular element is a combination of DKT and CST elements, while the quadrilateral is a combination of DKQ and the bilinear quadrilateral membrane element. In both elements, the sixth degree of freedom is handled via introducing fictitious stiffness. Secondly, in the same code, the sixth degrees of freedom in these elements is handled differently where the in-plane rotational d.o.f is considered as an effective d.o.f in the in-plane filed interpolation. Our goal is to compare resulting shell elements. Third, the analysis is enlarged to dynamic linear analysis by direct integration using Newmark-s implicit method. Finally, the linear dynamic analysis is extended to geometrically nonlinear dynamic analysis where Newmark-s method is used to integrate equations of motion and the Newton-Raphson method is employed for iterating within each time step increment until equilibrium is achieved. The obtained results demonstrate the effectiveness and robustness of the interpolation of the in-plane rotational d.o.f. and present deficiencies of using fictitious stiffness in dynamic linear and nonlinear analysis.

Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation

In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.

Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.

Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.

Assessing the Global Water Productivity of Some Irrigation Command Areas in Iran

The great challenge of the agricultural sector is to produce more crop from less water, which can be achieved by increasing crop water productivity. The modernization of the irrigation systems offers a number of possibilities to expand the economic productivity of water and improve the virtual water status. The objective of the present study is to assess the global water productivity (GWP) within the major irrigation command areas of I.R. Iran. For this purpose, fourteen irrigation command areas where located in different areas of Iran were selected. In order to calculate the global water productivity of irrigation command areas, all data on the delivered water to cropping pattern, cultivated area, crops water requirement, and yield production rate during 2002-2006 were gathered. In each of the command areas it seems that the cultivated crops have a higher amount of virtual water and thus can be replaced by crops with less virtual water. This is merely suggested due to crop water consumption and at the time of replacing crops, economic value as well as cultural and political factors must be considered. The results indicated that the lowest GWP belongs to Mahyar and Borkhar irrigation areas, 0.24 kg m-3, and the highest is that of the Dez irrigation area, 0.81 kg m-3. The findings demonstrated that water management in the two irrigation areas is just efficient. The difference in the GWP of irrigation areas is due to variations in the cropping pattern, amount of crop productions, in addition to the effective factors in the water use efficiency in the irrigation areas.

PetriNets Manipulation to Reduce Roaming Duration: Criterion to Improve Handoff Management

IETF RFC 2002 originally introduced the wireless Mobile-IP protocol to support portable IP addresses for mobile devices that often change their network access points to the Internet. The inefficiency of this protocol mainly within the handoff management produces large end-to-end packet delays, during registration process, and further degrades the system efficiency due to packet losses between subnets. The criterion to initiate a simple and fast full-duplex connection between the home agent and foreign agent, to reduce the roaming duration, is a very important issue to be considered by a work in this paper. State-transition Petri-Nets of the modeling scenario-based CIA: communication inter-agents procedure as an extension to the basic Mobile-IP registration process was designed and manipulated. The heuristic of configuration file during practical Setup session for registration parameters, on Cisco platform Router-1760 using IOS 12.3 (15)T is created. Finally, stand-alone performance simulations results from Simulink Matlab, within each subnet and also between subnets, are illustrated for reporting better end-to-end packet delays. Results verified the effectiveness of our Mathcad analytical manipulation and experimental implementation. It showed lower values of end-to-end packet delay for Mobile-IP using CIA procedure. Furthermore, it reported packets flow between subnets to improve packet losses between subnets.

Investigating Different Options for Reheating the First Converter Inlet Stream of Sulfur Recovery Units (SRUs)

The modified Claus process is the major technology for the recovery of elemental sulfur from hydrogen sulfide. The chemical reactions that can occur in the reaction furnace are numerous and many byproducts such as carbon disulfide and carbon carbonyl sulfide are produced. These compounds can often contribute from 20 to 50% of the pollutants and therefore, should be hydrolyzed in the catalytic converter. The inlet temperature of the first catalytic reactor should be maintained over than 250 °C, to hydrolyze COS and CS2. In this paper, the various configurations for the first converter reheating of sulfur recovery unit are investigated. As a result, the performance of each method is presented for a typical clause unit. The results show that the hot gas method seems to be better than the other methods.

Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Possible Protective Effect of Kombucha Tea Ferment on Cadmium Chloride Induced Liver and Kidney Damage in Irradiated Rats

Kombucha Tea Ferment (KT), was given to male albino rats, (1ml/Kg of body weight), via gavages, during 2 weeks before intraperitoneal administration of 3.5 mg/Kg body weight CdCl2 and/or whole body γ-irradiation with 4Gy, and during 4 weeks after each treatment. Hepatic and nephritic pathological changes included significant increases of serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) activities, and creatinine and urea contents with significant decrease in serum total antioxidant capacity (TAC). Increase in oxidative stress markers in liver and kidney tissues expressed by significant increase in malondialdehyde (MDA) and nitric oxide (NO) contents associated to significant depletion in superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) content were recorded. KT administration results in recovery of all the pathological changes. It could be concluded that KT might protect liver and kidney from oxidative damage induced by exposure to cadmium and/ or γ-irradiation.

Improving Quality of Business Networks for Information Systems

Computer networks are essential part in computerbased information systems. The performance of these networks has a great influence on the whole information system. Measuring the usability criteria and customers satisfaction on small computer network is very important. In this article, an effective approach for measuring the usability of business network in an information system is introduced. The usability process for networking provides us with a flexible and a cost-effective way to assess the usability of a network and its products. In addition, the proposed approach can be used to certify network product usability late in the development cycle. Furthermore, it can be used to help in developing usable interfaces very early in the cycle and to give a way to measure, track, and improve usability. Moreover, a new approach for fast information processing over computer networks is presented. The entire data are collected together in a long vector and then tested as a one input pattern. Proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Adoption of Appropriate and Cost Effective Technologies in Housing: Indian Experience

Construction cost in India is increasing at around 50 per cent over the average inflation levels. It have registered increase of up to 15 per cent every year, primarily due to cost of basic building materials such as steel, cement, bricks, timber and other inputs as well as cost of labour. As a result, the cost of construction using conventional building materials and construction is becoming beyond the affordable limits particularly for low-income groups of population as well as a large cross section of the middle - income groups. Therefore, there is a need to adopt cost-effective construction methods either by up-gradation of traditional technologies using local resources or applying modern construction materials and techniques with efficient inputs leading to economic solutions. This has become the most relevant aspect in the context of the large volume of housing to be constructed in both rural and urban areas and the consideration of limitations in the availability of resources such as building materials and finance. This paper makes an overview of the housing status in India and adoption of appropriate and cost effective technologies in the country.

The Dividend Payments for General Claim Size Distributions under Interest Rate

This paper evaluates the dividend payments for general claim size distributions in the presence of a dividend barrier. The surplus of a company is modeled using the classical risk process perturbed by diffusion, and in addition, it is assumed to accrue interest at a constant rate. After presenting the integro-differential equation with initial conditions that dividend payments satisfies, the paper derives a useful expression of the dividend payments by employing the theory of Volterra equation. Furthermore, the optimal value of dividend barrier is found. Finally, numerical examples illustrate the optimality of optimal dividend barrier and the effects of parameters on dividend payments.