A Study on Evaluation of Strut Type Suspension Noise Caused by Rubber Degradation

When cars are released from the factory, strut noises are very small and therefore it is difficult to perceive them. As the use time and travel distance increase, however, strut noises get larger so as to cause users much uneasiness. The noises generated at the field include engine noises and flow noises and therefore it is difficult to clearly discern the noises generated from struts. This study developed a test method which can reproduce field strut noises in the lab. Using the newly developed noise evaluation test, this study analyzed the effects that insulator performance degradation and failure can have on car noises. The study also confirmed that the insulator durability test by the simple back-and-forth motion cannot completely reflect the state of the parts failure in the field. Based on this, the study also confirmed that field noises can be reproduced through a durability test that considers heat aging.

An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks

Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.

CFD Analysis of Incompressible Turbulent Swirling Flow through Circle Grids Space Filling Plate

Circle grid space filling plate is a flow conditioner with a fractal pattern and used to eliminate turbulence originating from pipe fittings in experimental fluid flow applications. In this paper, steady state, incompressible, swirling turbulent flow through circle grid space filling plate has been studied. The solution and the analysis were carried out using finite volume CFD solver FLUENT 6.2. Three turbulence models were used in the numerical investigation and their results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003. The turbulence models investigated here are the standard k-ε, realizable k-ε, and the Reynolds Stress Model (RSM). The results showed that the RSM model gave the best agreement with the ISO pressure drop correlation. The effects of circle grids space filling plate thickness and Reynolds number on the flow characteristics have been investigated as well.

The Effect of Stress Biaxiality on Crack Shape Development

The development of shape and size of a crack in a pressure vessel under uniaxial and biaxial loadings is important in fitness-for-service evaluations such as leak-before-break. In this work finite element modelling was used to evaluate the mean stress and the J-integral around a front of a surface-breaking crack. A procedure on the basis of ductile tearing resistance curves of high and low constrained fracture mechanics geometries was developed to estimate the amount of ductile crack extension for surface-breaking cracks and to show the evolution of the initial crack shape. The results showed non-uniform constraint levels and crack driving forces around the crack front at large deformation levels. It was also shown that initially semi-elliptical surface cracks under biaxial load developed higher constraint levels around the crack front than in uniaxial tension. However similar crack shapes were observed with more extensions associated with cracks under biaxial loading.

Semi-Automatic Approach for Semantic Annotation

The third phase of web means semantic web requires many web pages which are annotated with metadata. Thus, a crucial question is where to acquire these metadata. In this paper we propose our approach, a semi-automatic method to annotate the texts of documents and web pages and employs with a quite comprehensive knowledge base to categorize instances with regard to ontology. The approach is evaluated against the manual annotations and one of the most popular annotation tools which works the same as our tool. The approach is implemented in .net framework and uses the WordNet for knowledge base, an annotation tool for the Semantic Web.

Decision Tree-based Feature Ranking using Manhattan Hierarchical Cluster Criterion

Feature selection study is gaining importance due to its contribution to save classification cost in terms of time and computation load. In search of essential features, one of the methods to search the features is via the decision tree. Decision tree act as an intermediate feature space inducer in order to choose essential features. In decision tree-based feature selection, some studies used decision tree as a feature ranker with a direct threshold measure, while others remain the decision tree but utilized pruning condition that act as a threshold mechanism to choose features. This paper proposed threshold measure using Manhattan Hierarchical Cluster distance to be utilized in feature ranking in order to choose relevant features as part of the feature selection process. The result is promising, and this method can be improved in the future by including test cases of a higher number of attributes.

Sustainable Construction in Malaysia – Developers- Awareness

The creation of a sustainable future depends on the knowledge and involvement of the people, as well as an understanding of the consequences of individual actions. Construction industry has long been associated with the detrimental effects to our mother earth. In Malaysia, the government, professional bodies and private companies are beginning to take heed in the necessity to reduce this environmental problem without restraining the need for development. This paper focuses on the actions undertaken by the Malaysian government, non-government organizations and construction players in promoting sustainability in construction. To ensure that those concerted efforts are not only skin deep in its impact, a survey was conducted to investigate the awareness of the developers regarding this issue and whether those developers has absorb the concept of sustainable construction in their current practices. The survey revealed that although the developers are aware of the rising issues on sustainability, little efforts are generated from them in implementing it. More effort is necessary to boost this application and further stimulate actions and strategies towards a sustainable built environment.

Mathematical Modeling of Current Harmonics Caused by Personal Computers

Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.

Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals

We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.

Reduction of Search Space by Applying Controlled Genetic Operators for Weight Constrained Shortest Path Problem

The weight constrained shortest path problem (WCSPP) is one of most several known basic problems in combinatorial optimization. Because of its importance in many areas of applications such as computer science, engineering and operations research, many researchers have extensively studied the WCSPP. This paper mainly concentrates on the reduction of total search space for finding WCSP using some existing Genetic Algorithm (GA). For this purpose, some controlled schemes of genetic operators are adopted on list chromosome representation. This approach gives a near optimum solution with smaller elapsed generation than classical GA technique. From further analysis on the matter, a new generalized schema theorem is also developed from the philosophy of Holland-s theorem.

Reversible Watermarking for H.264/AVC Videos

In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.

Using PFA in Feature Analysis and Selection for H.264 Adaptation

Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.

Construction of cDNALibrary and EST Analysis of Tenebriomolitorlarvae

Tofurther advance research on immune-related genes from T. molitor, we constructed acDNA library and analyzed expressed sequence taq (EST) sequences from 1,056 clones. After removing vector sequence and quality checkingthrough thePhred program (trim_alt 0.05 (P-score>20), 1039 sequences were generated. The average length of insert was 792 bp. In addition, we identified 162 clusters, 167 contigs and 391 contigs after clustering and assembling process using a TGICL package. EST sequences were searchedagainst NCBI nr database by local BLAST (blastx, E

Machine Vision for the Inspection of Surgical Tasks: Applications to Robotic Surgery Systems

The use of machine vision to inspect the outcome of surgical tasks is investigated, with the aim of incorporating this approach in robotic surgery systems. Machine vision is a non-contact form of inspection i.e. no part of the vision system is in direct contact with the patient, and is therefore well suited for surgery where sterility is an important consideration,. As a proof-of-concept, three primary surgical tasks for a common neurosurgical procedure were inspected using machine vision. Experiments were performed on cadaveric pig heads to simulate the two possible outcomes i.e. satisfactory or unsatisfactory, for tasks involved in making a burr hole, namely incision, retraction, and drilling. We identify low level image features to distinguish the two outcomes, as well as report on results that validate our proposed approach. The potential of using machine vision in a surgical environment, and the challenges that must be addressed, are identified and discussed.

A Learning Agent for Knowledge Extraction from an Active Semantic Network

This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.

Investigations on the Influence of Process Parameters on the Sliding Wear Behavior of Components Produced by Direct Metal Laser Sintering (DMLS)

This work presents the results of a study carried out to determine the sliding wear behavior and its effect on the process parameters of components manufactured by direct metal laser sintering (DMLS). A standard procedure and specimen had been used in the present study to find the wear behavior. Using Taguchi-s experimental technique, an orthogonal array of modified L8 had been developed. Sliding wear testing using pin-on-disk machine was carried out and analysis of variance (ANOVA) technique was used to investigate the effect of process parameters and to identify the main process parameter that influences the properties of wear behavior on the DMLS components. It has been found that part orientation, one of the selected process parameter had more influence on wear as compared to other selected process parameters.

Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller

In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.

A Two-Phase Mechanism for Agent's Action Selection in Soccer Simulation

Soccer simulation is an effort to motivate researchers and practitioners to do artificial and robotic intelligence research; and at the same time put into practice and test the results. Many researchers and practitioners throughout the world are continuously working to polish their ideas and improve their implemented systems. At the same time, new groups are forming and they bring bright new thoughts to the field. The research includes designing and executing robotic soccer simulation algorithms. In our research, a soccer simulation player is considered to be an intelligent agent that is capable of receiving information from the environment, analyze it and to choose the best action from a set of possible ones, for its next move. We concentrate on developing a two-phase method for the soccer player agent to choose its best next move. The method is then implemented into our software system called Nexus simulation team of Ferdowsi University. This system is based on TsinghuAeolus[1] team that was the champion of the world RoboCup soccer simulation contest in 2001 and 2002.

Cultural Effect on Using New Technologies

One of the main concerns in the Information Technology field is adoption with new technologies in organizations which may result in increasing the usage paste of these technologies.This study aims to look at the issue of culture-s role in accepting and using new technologies in organizations. The study examines the effect of culture on accepting and intention to use new technology in organizations. Studies show culture is one of the most important barriers in adoption new technologies. The model used for accepting and using new technology is Technology Acceptance Model (TAM), while for culture and dimensions a well-known theory by Hofsted was used. Results of the study show significant effect of culture on intention to use new technologies. All four dimensions of culture were tested to find the strength of relationship with behavioral intention to use new technologies. Findings indicate the important role of culture in the level of intention to use new technologies and different role of each dimension to improve adaptation process. The study suggests that transferring of new technologies efforts are most likely to be successful if the parties are culturally aligned.