Analysis of Climatic Strategies in Designing the Residential Buildings in Cold Dry Climate of Tabriz Metropolis to Reduce Air Pollution in Urban Environment

Nowadays, the earth is countered with serious problem of air pollution. This problem has been started from the industrial revolution and has been faster in recent years, so that leads the earth to ecological and environmental disaster. One of its results is the global warming problem and its related increase in global temperature. The most important factors in air pollution especially in urban environments are Automobiles and residential buildings that are the biggest consumers of the fossil energies, so that if the residential buildings as a big part of the consumers of such energies reduce their consumption rate, the air pollution will be decreased. Since Metropolises are the main centers of air pollution in the world, assessment and analysis of efficient strategies in decreasing air pollution in such cities, can lead to the desirable and suitable results and can solve the problem at least in critical level. Tabriz city is one of the most important metropolises in North west of Iran that about two million people are living there. for its situation in cold dry climate, has a high rate of fossil energies consumption that make air pollution in its urban environment. These two factors, being both metropolis and in cold dry climate, make this article try to analyze the strategies of climatic design in old districts of the city and use them in new districts of the future. These strategies can be used in this city and other similar cities and pave the way to reduce energy consumption and related air pollution to save whole world.

A Reconfigurable Distributed Multiagent System Optimized for Scalability

This paper proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topologyindependent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead.

Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Seismic Behavior and Capacity/Demand Analyses of a Simply-Supported Multi-Span Precast Bridge

This paper presents the results of an analytical study on the seismic response of a Multi-Span-Simply-Supported precast bridge in Washington State. The bridge was built in the early 1960's along Interstate 5 and was widened the first time in 1979 and the second time in 2001. The primary objective of this research project is to determine the seismic vulnerability of the bridge in order to develop the required retrofit measure. The seismic vulnerability of the bridge is evaluated using two seismic evaluation methods presented in the FHWA Seismic Retrofitting Manual for Highway Bridges, Method C and Method D2. The results of the seismic analyses demonstrate that Method C and Method D2 vary markedly in terms of the information they provide to the bridge designer regarding the vulnerability of the bridge columns.

Business Rules for Data Warehouse

Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.

Visualization of Code Clone Detection Results and the Implementation with Structured Data

This paper describes a code clone visualization method, called FC graph, and the implementation issues. Code clone detection tools usually show the results in a textual representation. If the results are large, it makes a problem to software maintainers with understanding them. One of the approaches to overcome the situation is visualization of code clone detection results. A scatter plot is a popular approach to the visualization. However, it represents only one-to-one correspondence and it is difficult to find correspondence of code clones over multiple files. FC graph represents correspondence among files, code clones and packages in Java. All nodes in FC graph are positioned using force-directed graph layout, which is dynami- cally calculated to adjust the distances of nodes until stabilizing them. We applied FC graph to some open source programs and visualized the results. In the author’s experience, FC graph is helpful to grasp correspondence of code clones over multiple files and also code clones with in a file.

Migration among Multicities

This paper proposes a simple model of economic geography within the Dixit-Stiglitz-Iceberg framework that may be used to analyze migration patterns among three cities. The cost–benefit tradeoffs affecting incentives for three types of migration, including echelon migration, are discussed. This paper develops a tractable, heterogeneous-agent, general equilibrium model, where agents share constant human capital, and explores the relationship between the benefits of echelon migration and gross human capital. Using Chinese numerical solutions, we study the manifestation of echelon migration and how it responds to changes in transportation cost and elasticity of substitution. Numerical results demonstrate that (i) there are positive relationships between a migration-s benefit-and-wage ratio, (ii) there are positive relationships between gross human capital ratios and wage ratios as to origin and destination, and (iii) we identify 13 varieties of human capital convergence among cities. In particular, this model predicts population shock resulting from the processes of migration choice and echelon migration.

Assessment of Cadmium Level in Water from Watershed of the Kowsar Dam

The Kowsar dam supply water for different usages such as drinking, industrial, agricultural and aquaculture farms usages and located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated cities in this area. The study was undertaken to assess the status of water quality in the urban areas of the Kowsar dam. A total of 28 water samples were collected from 6 stations on surface water and 1 station from groundwater on the watershed of the Kowsar dam. All the samples were analyzed for Cd concentration using standard procedures. The results were compared with other national and international standards. Among the analyzed samples, as the maximum value of cadmium (1.131 μg/L) was observed on the station 2 at the winter 2009, all the samples analyzed were within the maximum admissible limits by the United States Environmental Protection Agency, EU, WHO, New Zealand , Australian, Iranian, and the Indian standards. In general results of the present study have shown that Cd mean values of stations No. 4, 1 and 2 with 0.5135, 0.0.4733 and 0.4573 μg/L respectively are higher than the other stations . Although Cd level of all samples and stations have had normal values but this is an indication of pollution potential and hazards because of human activity and waste water of towns in the areas, which can effect on human health implications in future. This research, therefore, recommends the government and other responsible authorities to take suitable improving measures in the Kowsar dam watershed-s.

A Monte Carlo Method to Data Stream Analysis

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations

Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.

Ezilla Cloud Service with Cassandra Database for Sensor Observation System

The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and speedup, we proposed the sensor observation system to deal with a huge amount of data in the Cassandra database. The sensor observation system is based on the Ezilla to store sensor raw data into distributed database. We adopt the Ezilla Cloud service to create virtual machines and login into virtual machine to deploy the sensor observation system. Integrating the sensor observation system with Ezilla is to quickly deploy experiment environment and access a huge amount of data with distributed database that support the replication mechanism to protect the data security.

Faults Forecasting System

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Evaluation of Protein Digestibility in Canola Meals between Caecectomised and Intact Adult Cockerels

The experiment was conducted to evaluate digestibility quantities of protein in Canola Meals (CMs) between caecectomised and intact adult Rhode Island Red (RIR) cockerels with using conventional addition method (CAM) for 7 d: a 4-d adaptation and a 3-d experiment period on the basis of a completely randomized design with 4 replicates. Results indicated that caecectomy decreased (P

Pushover Analysis of Short Structures

In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.

Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques

The draw solute separation process in Forward Osmosis desalination was simulated in Aspen Plus chemical process modeling software, to estimate the energy consumption and compare it with other desalination processes, mainly the Reverse Osmosis process which is currently most prevalent. The electrolytic chemistry for the system was retrieved using the Elec – NRTL property method in the Aspen Plus database. Electrical equivalent of energy required in the Forward Osmosis desalination technique was estimated and compared with the prevalent desalination techniques.

Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics

Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness

Fabrication and Characterization of Poly-Si Vertical Nanowire Thin Film Transistor

In this paper, we present a vertical nanowire thin film transistor with gate-all-around architecture, fabricated using CMOS compatible processes. A novel method of fabricating polysilicon vertical nanowires of diameter as small as 30 nm using wet-etch is presented. Both n-type and p-type vertical poly-silicon nanowire transistors exhibit superior electrical characteristics as compared to planar devices. On a poly-crystalline nanowire of 30 nm diameter, high Ion/Ioff ratio of 106, low drain-induced barrier lowering (DIBL) of 50 mV/V, and low sub-threshold slope SS~100mV/dec are demonstrated for a device with channel length of 100 nm.

Design, Development and Implementation of aTemperature Sensor using Zigbee Concepts

This paper deals with the design, development & implementation of a temperature sensor using zigbee. The main aim of the work undertaken in this paper is to sense the temperature and to display the result on the LCD using the zigbee technology. ZigBee operates in the industrial, scientific and medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and 2.4 GHz in most jurisdictions worldwide. The technology is intended to be simpler and cheaper than other WPANs such as Bluetooth. The most capable ZigBee node type is said to require only about 10 % of the software of a typical Bluetooth or Wireless Internet node, while the simplest nodes are about 2 %. However, actual code sizes are much higher, more like 50 % of the Bluetooth code size. ZigBee chip vendors have announced 128-kilobyte devices. In this work undertaken in the design & development of the temperature sensor, it senses the temperature and after amplification is then fed to the micro controller, this is then connected to the zigbee module, which transmits the data and at the other end the zigbee reads the data and displays on to the LCD. The software developed is highly accurate and works at a very high speed. The method developed shows the effectiveness of the scheme employed.

REDD: Reliable Energy-Efficient Data Dissemination in Wireless Sensor Networks with Multiple Mobile Sinks

In wireless sensor network (WSN) the use of mobile sink has been attracting more attention in recent times. Mobile sinks are more effective means of balancing load, reducing hotspot problem and elongating network lifetime. The sensor nodes in WSN have limited power supply, computational capability and storage and therefore for continuous data delivery reliability becomes high priority in these networks. In this paper, we propose a Reliable Energy-efficient Data Dissemination (REDD) scheme for WSNs with multiple mobile sinks. In this strategy, sink first determines the location of source and then directly communicates with the source using geographical forwarding. Every forwarding node (FN) creates a local zone comprising some sensor nodes that can act as representative of FN when it fails. Analytical and simulation study reveals significant improvement in energy conservation and reliable data delivery in comparison to existing schemes.