Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

FleGSens – Secure Area Monitoring Using Wireless Sensor Networks

In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.

Factors of Effective Business Software Systems Development and Enhancement Projects Work Effort Estimation

Majority of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) fail to meet criteria of their effectiveness, what leads to the considerable financial losses. One of the fundamental reasons for such projects- exceptionally low success rate are improperly derived estimates for their costs and time. In the case of BSS D&EP these attributes are determined by the work effort, meanwhile reliable and objective effort estimation still appears to be a great challenge to the software engineering. Thus this paper is aimed at presenting the most important synthetic conclusions coming from the author-s own studies concerning the main factors of effective BSS D&EP work effort estimation. Thanks to the rational investment decisions made on the basis of reliable and objective criteria it is possible to reduce losses caused not only by abandoned projects but also by large scale of overrunning the time and costs of BSS D&EP execution.

Stress Ratio and Notch Effect on Fatigue Crack Initiation and Propagation in 2024 Al-alloy

This study reports an empirical investigation of fatigue crack initiation and propagation in 2024 T351 aluminium alloy using constant amplitude loading. In initiation stage, local strain approach at the notch was used and in stable propagation stage NASGRO model was applied. In this investigation, the flat plate of double through crack at hole is used. Based on experimental results (AFGROW Database), effect of stress ratio, R, is highlights on fatigue initiation life (FIL) and fatigue crack growth rate (FCGR). The increasing of dimension of hole characterizing the notch effect decrease the fatigue life.

Design of EDFA Gain Controller based on Disturbance Observer Technique

Based on a theoretical erbium-doped fiber amplifier (EDFA) model, we have proposed an application of disturbance observer(DOB) with proportional/integral/differential(PID) controller to EDFA for minimizing gain-transient time of wavelength -division-multiplexing (WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than 30μsec by applying DOB with PID controller to the control of amplifier gain. The proposed DOB-based gain control algorithm for EDFA was implemented as a digital control system using TI's DSP(TMS320C28346) chip and experimental results of the system verify the excellent performance of the proposed gain control methodology.

Splitting Modified Donor-Cell Schemes for Spectral Action Balance Equation

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating propagation velocity terms are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting modified donorcell scheme for avoiding stability problems and prove that it is consistent to the modified donor-cell scheme with same accuracy. The splitting modified donor-cell scheme was adopted to split the wave spectral action balance equation into four one-dimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-cores computer.

Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure

To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.

Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows

The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.

Microstructure Parameters of a Super-Ionic Sample (Csag2i3)

Sample of CsAg2I3 was prepared by solid state reaction. Then, microstructure parameters of this sample have been determined using wide angle X-ray scattering WAXS method. As well as, Cell parameters of crystal structure have been refined using CHEKCELL program. This analysis states that the lattice intrinsic strainof the sample is so small and the crystal size is on the order of 559Å.

An Introduction to the Concept of University – Community Business Continuity Management for Disaster Resilient City

The fundamental objective of the university is to genuinely provide a higher education to mankind and society. Higher education institutions earn billions of dollars in research funds, granted by national government or related institutions, which literally came from taxpayers. Everyday universities consume those grants; in return, provide society with a human resource and research developments. However, not all taxpayers have their major concerns on those researches, other than that they are more curiously to see the project being build tangibly and evidently to certify what they pay for. This paper introduces the concept of University – Community Business Continuity Management for Disaster – Resilient City, which modified the concept of Business Continuity Management (BCM) toward university community to create advancing collaboration leading to the disaster – resilient community and city. This paper focuses on describing in details the backgrounds and principles of the concept and discussing the advantages and limitations of the concept.

A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.

Aquatic Modeling: An Interplay between Scales

This paper presents an integrated knowledge-based approach to multi-scale modeling of aquatic systems, with a view to enhancing predictive power and aiding environmental management and policy-making. The basic phases of this approach have been exemplified in the case of a bay in Saronicos Gulf (Attiki, Greece). The results showed a significant problem with rising phytoplankton blooms linked to excessive microbial growth, arisen mostly due to increased nitrogen inflows; therefore, the nitrification/denitrification processes of the benthic and water column sub-systems have provided the quality variables to be monitored for assessing environmental status. It is thereby demonstrated that the proposed approach facilitates modeling choices and implementation option decisions, while it provides substantial support for knowledge and experience capitalization in long-term water management.

Accelerated Microwave Extraction of Natural Product using the Cryogrinding

Team distillation assisted by microwave extraction (SDAM) considered as accelerated technique extraction is a combination of microwave heating and steam distillation, performed at atmospheric pressure. SDAM has been compared with the same technique coupled with the cryogrinding of seeds (SDAM -CG). Isolation and concentration of volatile compounds are performed by a single stage for the extraction of essential oil from Cuminum cyminum seeds. The essential oils extracted by these two methods for 5 min were quantitatively (yield) and qualitatively (aromatic profile) no similar. These methods yield an essential oil with higher amounts of more valuable oxygenated compounds, and allow substantial savings of costs, in terms of time, energy and plant material. SDAM and SDAM-CG is a green technology and appears as a good alternative for the extraction of essential oils from aromatic plants.

Dataset Analysis Using Membership-Deviation Graph

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data

When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.

An Advanced Method for Speech Recognition

In this paper in consideration of each available techniques deficiencies for speech recognition, an advanced method is presented that-s able to classify speech signals with the high accuracy (98%) at the minimum time. In the presented method, first, the recorded signal is preprocessed that this section includes denoising with Mels Frequency Cepstral Analysis and feature extraction using discrete wavelet transform (DWT) coefficients; Then these features are fed to Multilayer Perceptron (MLP) network for classification. Finally, after training of neural network effective features are selected with UTA algorithm.

MIMO System Order Reduction Using Real-Coded Genetic Algorithm

In this paper, real-coded genetic algorithm (RCGA) optimization technique has been applied for large-scale linear dynamic multi-input-multi-output (MIMO) system. The method is based on error minimization technique where the integral square error between the transient responses of original and reduced order models has been minimized by RCGA. The reduction procedure is simple computer oriented and the approach is comparable in quality with the other well-known reduction techniques. Also, the proposed method guarantees stability of the reduced model if the original high-order MIMO system is stable. The proposed approach of MIMO system order reduction is illustrated with the help of an example and the results are compared with the recently published other well-known reduction techniques to show its superiority.

Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kPa

Isobaric vapor-liquid equilibrium measurements are reported for the binary mixtures of Mesitylene + 1-Heptanol and Mesitylene + 1-Octanol at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. Both the mixtures show positive deviation from ideality. The Mesitylene + 1-Heptanol mixture forms an azeotrope whereas Mesitylene + 1- Octanol form a non – azeotropic mixture. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency tests of Herington, and Hirata. The activity coefficients have been satisfactorily correlated by means of the Margules, Redlich-Kister, Wilson, Black, and NRTL equations. The activity coefficient values have also been obtained by UNIFAC method.

Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall

Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.

Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy

In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.