Multisensor Agent Based Intrusion Detection

In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.

Finding Equilibrium in Transport Networks by Simulation and Investigation of Behaviors

The goal of this paper is to find Wardrop equilibrium in transport networks at case of uncertainty situations, where the uncertainty comes from lack of information. We use simulation tool to find the equilibrium, which gives only approximate solution, but this is sufficient for large networks as well. In order to take the uncertainty into account we have developed an interval-based procedure for finding the paths with minimal cost using the Dempster-Shafer theory. Furthermore we have investigated the users- behaviors using game theory approach, because their path choices influence the costs of the other users- paths.

Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Sabilli Canal in Dezful, Iran

Sediment formation and its transport along the river course is considered as important hydraulic consideration in river engineering. Their impact on the morphology of rivers on one hand and important considerations of which in the design and construction of the hydraulic structures on the other has attracted the attention of experts in arid and semi-arid regions. Under certain conditions where the momentum energy of the flow stream reaches a specific rate, the sediment materials start to be transported with the flow. This can usually be analyzed in two different categories of suspended and bed load materials. Sedimentation phenomenon along the waterways and the conveyance of vast volume of materials into the canal networks can potentially influence water abstraction in the intake structures. This can pose a serious threat to operational sustainability and water delivery performance in the canal networks. The situation is serious where ineffective watershed management (poor vegetation cover in the water basin) is the underlying cause of soil erosion which feeds the materials into the waterways that intern would necessitate comprehensive study. The present paper aims to present an analytical investigation of the sediment process in the waterways on one hand and estimation of the sediment load transport into the lined canals using the SHARC software on the other. For this reason, the paper focuses on the comparative analysis of the hydraulic behaviors of the Sabilli main canal that feeds the pumping station with that of the Western canal in the Greater Dezful region to identify effective factors in sedimentation and ways of mitigating their impact on water abstraction in the canal systems. The method involved use of observational data available in the Dezful Dastmashoon hydrometric station along a 6 km waterway of the Sabilli main canal using the SHARC software to estimate the suspended load concentration and bed load materials. Results showed the transport of a significant volume of sediment loads from the waterways into the canal system which is assumed to have arisen from the absence of stilling basin on one hand and the gravity flow on the other has caused serious challenges. This is contrary to what occurs in the Sabilli canal, where the design feature which incorporates a settling basin just before the pumping station is the major cause of reduced sediment load transport into the canal system.Results showed that modification of the present design features by constructing a settling basin just upstream of the western intake structure can considerably reduce the entry of sediment materials into the canal system. Not only this can result in the sustainability of the hydraulic structures but can also improve operational performance of water conveyance and distribution system, all of which are the pre-requisite to secure reliable and equitable water delivery regime for the command area.

Signalling Cost Analysis of PDE-NEMO

A Personal Distributed Environment (PDE) is an example of an IP-based system architecture designed for future mobile communications. In a single PDE, there exist several Subnetworks hosting devices located across the infrastructure, which will inter-work with one another through the coordination of a Device Management Entity (DME). Some of these Sub-networks are fixed and some are mobile. In order to support Mobile Sub-networks mobility in the PDE, the PDE-NEMO protocol was proposed. This paper discussed the signalling cost analysis of PDE-NEMO by use of a detailed simulation model. The paper started with the introduction of the protocol, followed by the experiments and results and then followed by discussions.

Home-Network Security Model in Ubiquitous Environment

Social interest and demand on Home-Network has been increasing greatly. Although various services are being introduced to respond to such demands, they can cause serious security problems when linked to the open network such as Internet. This paper reviews the security requirements to protect the service users with assumption that the Home-Network environment is connected to Internet and then proposes the security model based on the requirement. The proposed security model can satisfy most of the requirements and further can be dynamically applied to the future ubiquitous Home-Networks.

Power Generation Scheduling of Thermal Units Considering Gas Pipelines Constraints

With the growth of electricity generation from gas energy gas pipeline reliability can substantially impact the electric generation. A physical disruption to pipeline or to a compressor station can interrupt the flow of gas or reduce the pressure and lead to loss of multiple gas-fired electric generators, which could dramatically reduce the supplied power and threaten the power system security. Gas pressure drops during peak loading time on pipeline system, is a common problem in network with no enough transportation capacity which limits gas transportation and causes many problem for thermal domain power systems in supplying their demand. For a feasible generation scheduling planning in networks with no sufficient gas transportation capacity, it is required to consider gas pipeline constraints in solving the optimization problem and evaluate the impacts of gas consumption in power plants on gas pipelines operating condition. This paper studies about operating of gas fired power plants in critical conditions when the demand of gas and electricity peak together. An integrated model of gas and electric model is used to consider the gas pipeline constraints in the economic dispatch problem of gas-fueled thermal generator units.

Some Remarkable Properties of a Hopfield Neural Network with Time Delay

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.

The Usage of Social Networks in Educational Context

Possible advantages of technology in educational context required the defining boundaries of formal and informal learning. Increasing opportunity to ubiquitous learning by technological support has revealed a question of how to discover the potential of individuals in the spontaneous environments such as social networks. This seems to be related with the question of what purposes in social networks have been being used? Social networks provide various advantages in educational context as collaboration, knowledge sharing, common interests, active participation and reflective thinking. As a consequence of these, the purpose of this study is composed of proposing a new model that could determine factors which effect adoption of social network applications for usage in educational context. While developing a model proposal, the existing adoption and diffusion models have been reviewed and they are thought to be suitable on handling an original perspective instead of using completely other diffusion or acceptance models because of different natures of education from other organizations. In the proposed model; social factors, perceived ease of use, perceived usefulness and innovativeness are determined four direct constructs that effect adoption process. Facilitating conditions, image, subjective norms and community identity are incorporated to model as antecedents of these direct four constructs.

A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System

The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.

Architecture Integrating Wireless Body Area Networks with Web Services for Ubiquitous Healthcare Service Provisioning

Recent advancements in sensor technologies and Wireless Body Area Networks (WBANs) have led to the development of cost-effective healthcare devices which can be used to monitor and analyse a person-s physiological parameters from remote locations. These advancements provides a unique opportunity to overcome current healthcare challenges of low quality service provisioning, lack of easy accessibility to service varieties, high costs of services and increasing population of the elderly experienced globally. This paper reports on a prototype implementation of an architecture that seamlessly integrates Wireless Body Area Network (WBAN) with Web services (WS) to proactively collect physiological data of remote patients to recommend diagnostic services. Technologies based upon WBAN and WS can provide ubiquitous accessibility to a variety of services by allowing distributed healthcare resources to be massively reused to provide cost-effective services without individuals physically moving to the locations of those resources. In addition, these technologies can reduce costs of healthcare services by allowing individuals to access services to support their healthcare. The prototype uses WBAN body sensors implemented on arduino fio platforms to be worn by the patient and an android smart phone as a personal server. The physiological data are collected and uploaded through GPRS/internet to the Medical Health Server (MHS) to be analysed. The prototype monitors the activities, location and physiological parameters such as SpO2 and Heart Rate of the elderly and patients in rehabilitation. Medical practitioners would have real time access to the uploaded information through a web application.

Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays

In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.

Discovering Complex Regularities by Adaptive Self Organizing Classification

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.

Wireless Sensor Networks for Swiftlet Farms Monitoring

This paper provides an in-depth study of Wireless Sensor Network (WSN) application to monitor and control the swiftlet habitat. A set of system design is designed and developed that includes the hardware design of the nodes, Graphical User Interface (GUI) software, sensor network, and interconnectivity for remote data access and management. System architecture is proposed to address the requirements for habitat monitoring. Such applicationdriven design provides and identify important areas of further work in data sampling, communications and networking. For this monitoring system, a sensor node (MTS400), IRIS and Micaz radio transceivers, and a USB interfaced gateway base station of Crossbow (Xbow) Technology WSN are employed. The GUI of this monitoring system is written using a Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) along with Xbow Technology drivers provided by National Instrument. As a result, this monitoring system is capable of collecting data and presents it in both tables and waveform charts for further analysis. This system is also able to send notification message by email provided Internet connectivity is available whenever changes on habitat at remote sites (swiftlet farms) occur. Other functions that have been implemented in this system are the database system for record and management purposes; remote access through the internet using LogMeIn software. Finally, this research draws a conclusion that a WSN for monitoring swiftlet habitat can be effectively used to monitor and manage swiftlet farming industry in Sarawak.

Neural Network Learning Based on Chaos

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach

Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.

Multi-View Neural Network Based Gait Recognition

Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

A Fast Handover Scheme for Proxy Mobile IPv6 using IEEE 802.21 Media Independent Handover

In this paper, to resolve the problem of existing schemes, an alternative fast handover Proxy Mobile IPv6 (PMIPv6) scheme using the IEEE 802.21 Media Independent Handover (MIH) function is proposed for heterogeneous wireless networks. The proposed scheme comes to support fast handover for the mobile node (MN) irrespective of the presence or absence of MIH functionality as well as L3 mobility functionality, whereas the MN in existing schemes has to implement MIH functionality. That is, the proposed scheme does not require the MN to be involved in MIH related signaling required for handover procedure. The base station (BS) with MIH functionality performs handover on behalf of the MN. Therefore, the proposed scheme can reduce burden and power consumption of MNs with limited resource and battery power since MNs are not required to be involved for the handover procedure. In addition, the proposed scheme can reduce considerably traffic overhead over wireless links between MN and BS since signaling messages are reduced.

Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

MaxMin Share Based Medium Access for Attaining Fairness and Channel Utilization in Mobile Adhoc Networks

Due to the complex network architecture, the mobile adhoc network-s multihop feature gives additional problems to the users. When the traffic load at each node gets increased, the additional contention due its traffic pattern might cause the nodes which are close to destination to starve the nodes more away from the destination and also the capacity of network is unable to satisfy the total user-s demand which results in an unfairness problem. In this paper, we propose to create an algorithm to compute the optimal MAC-layer bandwidth assigned to each flow in the network. The bottleneck links contention area determines the fair time share which is necessary to calculate the maximum allowed transmission rate used by each flow. To completely utilize the network resources, we compute two optimal rates namely, the maximum fair share and minimum fair share. We use the maximum fair share achieved in order to limit the input rate of those flows which crosses the bottleneck links contention area when the flows that are not allocated to the optimal transmission rate and calculate the following highest fair share. Through simulation results, we show that the proposed protocol achieves improved fair share and throughput with reduced delay.

The Panpositionable Hamiltonicity of k-ary n-cubes

The hypercube Qn is one of the most well-known and popular interconnection networks and the k-ary n-cube Qk n is an enlarged family from Qn that keeps many pleasing properties from hypercubes. In this article, we study the panpositionable hamiltonicity of Qk n for k ≥ 3 and n ≥ 2. Let x, y of V (Qk n) be two arbitrary vertices and C be a hamiltonian cycle of Qk n. We use dC(x, y) to denote the distance between x and y on the hamiltonian cycle C. Define l as an integer satisfying d(x, y) ≤ l ≤ 1 2 |V (Qk n)|. We prove the followings: • When k = 3 and n ≥ 2, there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 5 is odd and n ≥ 2, we request that l /∈ S where S is a set of specific integers. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 4 is even and n ≥ 2, we request l-d(x, y) to be even. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. The result is optimal since the restrictions on l is due to the structure of Qk n by definition.