Abstract: In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.
Abstract: This paper considers the modelling of a non-stationary
bivariate integer-valued autoregressive moving average of order
one (BINARMA(1,1)) with correlated Poisson innovations. The
BINARMA(1,1) model is specified using the binomial thinning
operator and by assuming that the cross-correlation between the
two series is induced by the innovation terms only. Based on
these assumptions, the non-stationary marginal and joint moments
of the BINARMA(1,1) are derived iteratively by using some initial
stationary moments. As regards to the estimation of parameters of
the proposed model, the conditional maximum likelihood (CML)
estimation method is derived based on thinning and convolution
properties. The forecasting equations of the BINARMA(1,1) model
are also derived. A simulation study is also proposed where
BINARMA(1,1) count data are generated using a multivariate
Poisson R code for the innovation terms. The performance of
the BINARMA(1,1) model is then assessed through a simulation
experiment and the mean estimates of the model parameters obtained
are all efficient, based on their standard errors. The proposed model
is then used to analyse a real-life accident data on the motorway in
Mauritius, based on some covariates: policemen, daily patrol, speed
cameras, traffic lights and roundabouts. The BINARMA(1,1) model
is applied on the accident data and the CML estimates clearly indicate
a significant impact of the covariates on the number of accidents on
the motorway in Mauritius. The forecasting equations also provide
reliable one-step ahead forecasts.
Abstract: Road traffic accidents lead to a higher rate of death and injury, especially in vulnerable road users such as pedestrians. Improving the safety of facilities for pedestrians is a major concern for policymakers because of the high number of pedestrian fatalities and direct and indirect costs which are imposed to the society. This study focuses on the idea of determining the willingness to pay of pedestrians for increasing their safety while crossing the street. In this study, three different scenarios including crossing the street with zebra crossing facilities, crossing the street with zebra crossing facilities and installing a pedestrian traffic light and constructing a pedestrian bridge with escalator are presented. The research was conducted based on stated preferences method. The required data were collected from a questionnaire that consisted of three parts: pedestrian’s demographic characteristics, travel characteristics and scenarios. Four different payment amounts are presented for each scenario and a logit model has been built for each proposed payment. The results show that sex, age, education, average household income and individual salary have significant effect on choosing a scenario. Among the policies that have been mentioned through the questionnaire scenarios, the scenario of crossing the street with zebra crossing facilities and installing a traffic lights is the most frequent, with willingness to pay 10,000 Rials and the scenario of crossing the street with a zebra crossing with a willingness to pay 100,000 Rials having the least frequency. For all scenarios, as the payment is increasing, the willingness to pay decreases.
Abstract: Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.
Abstract: Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.
Abstract: This document describes an advanced system and methodology for Cross Traffic Alert (CTA), able to detect vehicles that move into the vehicle driving path from the left or right side. The camera is supposed to be not only on a vehicle still, e.g. at a traffic light or at an intersection, but also moving slowly, e.g. in a car park. In all of the aforementioned conditions, a driver’s short loss of concentration or distraction can easily lead to a serious accident. A valid support to avoid these kinds of car crashes is represented by the proposed system. It is an extension of our previous work, related to a clustering system, which only works on fixed cameras. Just a vanish point calculation and simple optical flow filtering, to eliminate motion vectors due to the car relative movement, is performed to let the system achieve high performances with different scenarios, cameras and resolutions. The proposed system just uses as input the optical flow, which is hardware implemented in the proposed platform and since the elaboration of the whole system is really speed and power consumption, it is inserted directly in the camera framework, allowing to execute all the processing in real-time.
Abstract: Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.
Abstract: In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Abstract: The aim of this study was to design and simulate a
particular type of Asynchronous State Machine (ASM), namely a
‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz.
The design task involved two main stages: firstly, designing a 4-bit
binary counter using J-K flip flops as the timing signal and,
subsequently, attaining the digital logic by deploying ASM design
process. The TLC was designed such that it showed a sequence of
three different colours, i.e. red, yellow and green, corresponding to
set thresholds by deploying the least number of AND, OR and NOT
gates possible. The software Multisim was deployed to design such
circuit and simulate it for circuit troubleshooting in order for it to
display the output sequence of the three different colours on the
traffic light in the correct order. A clock signal, an asynchronous 4-
bit binary counter that was designed through the use of J-K flip flops
along with an ASM were used to complete this sequence, which was
programmed to be repeated indefinitely. Eventually, the circuit was
debugged and optimized, thus displaying the correct waveforms of
the three outputs through the logic analyser. However, hazards
occurred when the frequency was increased to 10 MHz. This was
attributed to delays in the feedback being too high.
Abstract: In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.
Abstract: The picture of a perfect road construction site is the one that utilizes conventional vertical road signs and a flagman to optimize the traffic flow with minimum hazel to the public. Former research has been carried out by Department of Occupational Safety and Health (DOSH) and Ministry of Works to further enhance smoothness in traffic operations and particularly in safety issues within work zones. This paper highlights on hazardous zones in a certain road construction or road maintenance site. Most cases show that the flagman falls into high risk of fatal accidents within work zone. Various measures have been taken by both the authorities and contractors to overcome such miseries, yet it-s impossible to eliminate the usage of a flagman since it is considered the best practice. With the implementation of new technologies in automating the traffic flow in road construction site, it is possible to eliminate the usage of a flagman. The intelligent traffic light system is designed to solve problems which contribute hazardous at road construction site and to be inline with the road safety regulation which is taken into granted.
Abstract: This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a
way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from
the signal there is a chance of clearing the traffic. Traffic signal
preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and
estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system
and transmitting the information-s using a wireless transmitter via a
wireless network. The fleet management system connected to a
wireless receiver is capable of receiving the information transmitted
by the lifesaving vehicle .A computer is also located at the
intersection uses corrected vehicle position, speed & direction
measurements, in conjunction with previously recorded data defining
approach routes to the intersection, to determine the optimum time to
switch a traffic light controller to preemption mode so that lifesaving
vehicles can pass safely. In case when the ambulance need to take a
“U" turn in a heavy traffic area we suggest a solution. Now we are
going to make use of computerized median which uses LINKED
BLOCKS (removable) to solve the above problem.
Abstract: For controlling urban transportations, traffic lights
show similar behavior for different kinds of vehicles at intersections.
Emergency vehicles need special behavior at intersections, so traffic
lights should behave in different manner when emergency vehicles
approach them. At the present time, intelligent traffic lights control
urban transportations intelligently. In this paper the ethical aspect of
this topic is considered. A model is proposed for adding special
component to emergency vehicles and traffic lights for controlling
traffic in ethical manner. The proposed model is simulated by JADE.
Abstract: This research is designed for helping a WAPbased mobile phone-s user in order to analyze of logistics in the traffic area by applying and designing the accessible processes from mobile user to server databases. The research-s design comprises Mysql 4.1.8-nt database system for being the server which there are three sub-databases, traffic light – times of intersections in periods of the day, distances on the road of area-blocks where are divided from the main sample-area and speeds of sample vehicles (motorcycle, personal car and truck) in periods of the day. For interconnections between the server and user, PHP is used to calculate distances and travelling times from the beginning point to destination, meanwhile XHTML applied for receiving, sending and displaying data from PHP to user-s mobile. In this research, the main sample-area is focused at the Huakwang-Ratchada-s area, Bangkok, Thailand where usually the congested point and 6.25 km2 surrounding area which are split into 25 blocks, 0.25 km2 for each. For simulating the results, the designed server-database and all communicating models of this research have been uploaded to www.utccengineering.com/m4tg and used the mobile phone which supports WAP 2.0 XHTML/HTML multimode browser for observing values and displayed pictures. According to simulated results, user can check the route-s pictures from the requiring point to destination along with analyzed consuming times when sample vehicles travel in various periods of the day.
Abstract: This paper presents an effective traffic lights detection
method at the night-time. First, candidate blobs of traffic lights are
extracted from RGB color image. Input image is represented on the
dominant color domain by using color transform proposed by Ruta,
then red and green color dominant regions are selected as candidates.
After candidate blob selection, we carry out shape filter for noise
reduction using information of blobs such as length, area, area of
boundary box, etc. A multi-class classifier based on SVM (Support
Vector Machine) applies into the candidates. Three kinds of features
are used. We use basic features such as blob width, height, center
coordinate, area, area of blob. Bright based stochastic features are also
used. In particular, geometric based moment-s values between
candidate region and adjacent region are proposed and used to improve
the detection performance. The proposed system is implemented on
Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the
urban and rural road videos. Through the test, we show that the
proposed method using PF, BMF, and GMF reaches up to 93 % of
detection rate with computation time of in average 15 ms/frame.
Abstract: an intelligent BRT system is necessary when
communities looking for new ways to use high capacity rapid transit
at a reduced cost.This paper will describe the intelligent control
system that works with Datacenter. With the help of GPS system, the
data center can monitor the situation of each bus and bus station.
Through RFID technology, bus station and traffic light can transfer
data with bus and by Wimax communication technology all of parts
can talk together; data center learns all information about the location
of bus, the arrival of bus in each station and the number of passengers
in station and bus.Finally, the paper presents the case study of those
theories in Tehran BRT.
Abstract: Validation of an automation system is an important issue. The goal is to check if the system under investigation, modeled by a Petri net, never enters the undesired states. Usually, tools dedicated to Petri nets such as DESIGN/CPN are used to make reachability analysis. The biggest problem with this approach is that it is impossible to generate the full occurence graph of the system because it is too large. In this paper, we show how computational methods such as temporal logic model checking and Groebner bases can be used to verify the correctness of the design of an automation system. We report our experimental results with two automation systems: the Automated Guided Vehicle (AGV) system and the traffic light system. Validation of these two systems ranged from 10 to 30 seconds on a PC depending on the optimizing parameters.
Abstract: A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.
Abstract: This paper presents an effective traffic lights
recognition method at the daytime. First, Potential Traffic Lights
Detector (PTLD) use whole color source of YCbCr channel image and
make each binary image of green and red traffic lights. After PTLD
step, Shape Filter (SF) use to remove noise such as traffic sign, street
tree, vehicle, and building. At this time, noise removal properties
consist of information of blobs of binary image; length, area, area of
boundary box, etc. Finally, after an intermediate association step witch
goal is to define relevant candidates region from the previously
detected traffic lights, Adaptive Multi-class Classifier (AMC) is
executed. The classification method uses Haar-like feature and
Adaboost algorithm. For simulation, we are implemented through Intel
Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and
rural roads. Through the test, we are compared with our method and
standard object-recognition learning processes and proved that it
reached up to 94 % of detection rate which is better than the results
achieved with cascade classifiers. Computation time of our proposed
method is 15 ms.