Moment Invariants in Image Analysis

This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a general theory how to construct these invariants and show also a few of them in explicit forms. We review efficient numerical algorithms that can be used for moment computation and demonstrate practical examples of using moment invariants in real applications.

Fractal Analysis on Human Colonic Pressure Activities based on the Box-counting Method

The colonic tissue is a complicated dynamic system and the colonic activities it generates are composed of irregular segmental waves, which are referred to as erratic fluctuations or spikes. They are also highly irregular with subunit fractal structure. The traditional time-frequency domain statistics like the averaged amplitude, the motility index and the power spectrum, etc. are insufficient to describe such fluctuations. Thus the fractal box-counting dimension is proposed and the fractal scaling behaviors of the human colonic pressure activities under the physiological conditions are studied. It is shown that the dimension of the resting activity is smaller than that of the normal one, whereas the clipped version, which corresponds to the activity of the constipation patient, shows with higher fractal dimension. It may indicate a practical application to assess the colonic motility, which is often indicated by the colonic pressure activity.

An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

Study of Solid Waste Landfill Suitability using Regional Screening Method and AHP in Rasht City

The practice of burying the solid waste under the ground is one of the waste disposal methods and dumping is known as an ultimate method in the fastest-growing cities like Rasht city in Iran. Some municipalities select the solid waste landfills without feasibility studies, programming, design and management plans. Therefore, several social and environmental impacts are created by these sites. In this study, the suitability of solid waste landfill in Rasht city, capital of Gilan Province is reviewed using Regional Screening Method (RSM), Geographic Information System (GIS) and Analytical Hierarchy Process (AHP). The results indicated that according to the suitability maps, the value of study site is midsuitable to suitable based on RSM and mid-suitable based on AHP.

ZBTB17 Gene rs10927875 Polymorphism in Slovak Patients with Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) is a severe cardiovascular disorder characterized by progressive systolic dysfunction due to cardiac chamber dilatation and inefficient myocardial contractility often leading to chronic heart failure. Recently, a genome-wide association studies (GWASs) on DCM indicate that the ZBTB17 gene rs10927875 single nucleotide polymorphism is associated with DCM. The aim of the study was to identify the distribution of ZBTB17 gene rs10927875 polymorphism in 50 Slovak patients with DCM and 80 healthy control subjects using the Custom Taqman®SNP Genotyping assays. Risk factors detected at baseline in each group included age, sex, body mass index, smoking status, diabetes and blood pressure. The mean age of patients with DCM was 52.9±6.3 years; the mean age of individuals in control group was 50.3±8.9 years. The distribution of investigated genotypes of rs10927875 polymorphism within ZBTB17 gene in the cohort of Slovak patients with DCM was as follows: CC (38.8%), CT (55.1%), TT (6.1%), in controls: CC (43.8%), CT (51.2%), TT (5.0%). The risk allele T was more common among the patients with dilated cardiomyopathy than in normal controls (33.7% versus 30.6%). The differences in genotype or allele frequencies of ZBTB17 gene rs10927875 polymorphism were not statistically significant (p=0.6908; p=0.6098). The results of this study suggest that ZBTB17 gene rs10927875 polymorphism may be a risk factor for susceptibility to DCM in Slovak patients with DCM. Studies of numerous files and additional functional investigations are needed to fully understand the roles of genetic associations.

Image Segmentation Using Suprathreshold Stochastic Resonance

In this paper a new concept of partial complement of a graph G is introduced and using the same a new graph parameter, called completion number of a graph G, denoted by c(G) is defined. Some basic properties of graph parameter, completion number, are studied and upperbounds for completion number of classes of graphs are obtained , the paper includes the characterization also.

Information Delivery and Advanced Traffic Information Systems in Istanbul

In this paper, we focused primarily on Istanbul data that is gathered by using intelligent transportation systems (ITS), and considered the developments in traffic information delivery and future applications that are being planned for implementation. Since traffic congestion is increasing and travel times are becoming less consistent and less predictable, traffic information delivery has become a critical issue. Considering the fuel consumption and wasted time in traffic, advanced traffic information systems are becoming increasingly valuable which enables travelers to plan their trips more accurately and easily.

A Study of Gas Metal Arc Welding Affecting Mechanical Properties of Austenitic Stainless Steel AISI 304

The objective of this research was to study influence parameters affecting to mechanical property of austenitic stainless steel grade 304 (AISI 304) with Gas Metal Arc Welding (GMAW). The research was applying factorial design experiment, which have following interested parameters: welding current at 80, 90, and 100 Amps, welding speeds at 250, 300, and 350 mm/min, and shield gas of 75% Ar + 25% CO2, 70% Ar + 25% CO2 + 5% O2 and 69.5% Ar + 25% CO2 + 5% O2 + 0.5% He gas. The study was done in following aspects: ultimate tensile strength and elongation. A research study of ultimate tensile strength found that main factor effect, which had the highest strength to AISI 304 welding was shield gas of 70% Ar + 25% CO2 + 5% O2 at average of 954.81 N/mm2. Result of the highest elongation was showed significantly different at interaction effect between shield gas of 69.5%Ar+25%CO2+5%O2+.5%He and welding speed at 250 mm/min at 47.94%.

Real-time ROI Acquisition for Unsupervised and Touch-less Palmprint

In this paper we proposed a novel method to acquire the ROI (Region of interest) of unsupervised and touch-less palmprint captured from a web camera in real-time. We use Viola-Jones approach and skin model to get the target area in real time. Then an innovative course-to-fine approach to detect the key points on the hand is described. A new algorithm is used to find the candidate key points coarsely and quickly. In finely stage, we verify the hand key points with the shape context descriptor. To make the user much comfortable, it can process the hand image with different poses, even the hand is closed. Experiments show promising result by using the proposed method in various conditions.

Elimination Noise by Adaptive Wavelet Threshold

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Current Distribution and Cathode Flooding Prediction in a PEM Fuel Cell

Non-uniform current distribution in polymer electrolyte membrane fuel cells results in local over-heating, accelerated ageing, and lower power output than expected. This issue is very critical when fuel cell experiences water flooding. In this work, the performance of a PEM fuel cell is investigated under cathode flooding conditions. Two-dimensional partially flooded GDL models based on the conservation laws and electrochemical relations are proposed to study local current density distributions along flow fields over a wide range of cell operating conditions. The model results show a direct association between cathode inlet humidity increases and that of average current density but the system becomes more sensitive to flooding. The anode inlet relative humidity shows a similar effect. Operating the cell at higher temperatures would lead to higher average current densities and the chance of system being flooded is reduced. In addition, higher cathode stoichiometries prevent system flooding but the average current density remains almost constant. The higher anode stoichiometry leads to higher average current density and higher sensitivity to cathode flooding.

Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change

Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.

A Contribution to the Application of the Structural Analysis Method in Entrepreneurial Practice

Quantitative methods of economic decision-making as the methodological base of the so called operational research represent an important set of tools for managing complex economic systems,both at the microeconomic level and on the macroeconomic scale. Mathematical models of controlled and controlling processes allow, by means of artificial experiments, obtaining information foroptimalor optimum approaching managerial decision-making.The quantitative methods of economic decision-making usually include a methodology known as structural analysis -an analysisof interdisciplinary production-consumption relations.

Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall frequency of one hour rainfall duration is more than 100-year frequency which exceeds the flood detention standard of 20-year frequency for the flood detention pond, the flood peak duration of flood detention pond is 1.7 hours at most even though the flood detention pond with maximum drainage potential about 15.0 m3/s of pumping system is constructed. If the rainfall peak current is more than maximum drainage potential, the flood peak duration of flood detention pond is about 1.9 hours at most. The flood detention pond is the key factor of stable drainage control and flood prevention. The critical factors of flood disaster is not only rainfall mass, but also rainfall frequency of heavy storm in different rainfall duration and flood detention frequency of flood detention system.

RAPD Analysis of Genetic Diversity of Castor Bean

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Comparison of MFCC and Cepstral Coefficients as a Feature Set for PCG Biometric Systems

Heart sound is an acoustic signal and many techniques used nowadays for human recognition tasks borrow speech recognition techniques. One popular choice for feature extraction of accoustic signals is the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear Mel-Scale that mimics the human hearing. However the Mel-Scale is almost linear in the frequency region of heart sounds and thus should produce similar results with the standard cepstral coefficients (CC). In this paper, MFCC is investigated to see if it produces superior results for PCG based human identification system compared to CC. Results show that the MFCC system is still superior to CC despite linear filter-banks in the lower frequency range, giving up to 95% correct recognition rate for MFCC and 90% for CC. Further experiments show that the high recognition rate is due to the implementation of filter-banks and not from Mel-Scaling.

Extended Least Squares LS–SVM

Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.

Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling

Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.

Tomato Fruit Quality of Different Cultivars Growth in Lithuania

Two cultivars ('Rutuliai', 'Saint Perrie') and five hybrids ('Tolstoi', 'Brooklyn', 'Tocayo', 'Benito', 'Tourist') of edible tomato (Lycopersicon esculentum Mill.) were investigated at the LRCAF Institute of Horticulture. The following fruit quality parameters were evaluated: the amount of lycopene, β-carotene, ascorbic acid, total and inverted sugar, sucrose, dry matter soluble solids in fresh tomato matter, also were determined fruit skin and flesh firmness, color indexes (CIE L*a*b*) and calculated hue angle (h°) with chroma (C).