Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Extend of Self-Life of Potato Round Slices with Edible Coating, Green Tea and Ascorbic Acid

The effects of coatings based on sodium alginate (S.A) and carboxyl methyl cellulose (CMC) on the color and moisture characteristics of potato round slices were investigated. It is the first time that this combination of polysaccharides is used as edible coating which alone had the best performance as inhibitor of potato color discoloration during the storage of 15 days at 4oC. When ascorbic acid (AA) and green tea (GT) were added in the above edible coating its effects on potato round slices changed. The mixtures of sodium alginate and carboxyl methyl cellulose with ascorbic acid or with green tea behave as a potential moisture barrier, resulting to the extent of potato samples self–life. These data suggests that both GT and AA are potential inhibitors of dehydration in potatoes and not only natural antioxidants.

Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)

Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.

Survey on Nano-fibers from Acetobacter Xylinum

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.

Spatial Query Localization Method in Limited Reference Point Environment

Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.

Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System

This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.

On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Predicting Protein Function using Decision Tree

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

The Removal of As(V) from Drinking Waters by Coagulation Process using Iron Salts

In this study arsenate [As(V)] removal from drinking water by coagulation process was investigated. Ferric chloride (FeCl3.6H2O) and ferrous sulfate (FeSO4.7H2O) were used as coagulant. The effects of major operating variables such as coagulant dose (1–30 mg/L) and pH (5.5–9.5) were investigated. Ferric chloride and ferrous sulfate were found as effective and reliable coagulant due to required dose, residual arsenate and coagulant concentration. Optimum pH values for maximum arsenate removal for ferrous sulfate and ferric chloride were found as 8 and 7.5. The arsenate removal efficiency decreased at neutral and acidic pH values for Fe(II) and at the high acidic and high alkaline pH for Fe(III). It was found that the increase of coagulant dose caused a substantial increase in the arsenate removal. But above a certain ferric chloride and ferrous sulfate dosage, the increase in arsenate removal was not significant. Ferric chloride and ferrous sulfate dose above 8 mg/L slightly increased arsenate removal.

A Generic and Extensible Spidergon NoC

The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.

Assessing and Managing Intellectual Capital to Support Open Innovation Paradigm

The objective of this paper is to support the application of Open Innovation practices in firms and organizations by the assessment and management of Intellectual Capital. Intellectual Capital constituents are analyzed in order to verify their capability of acting as key drivers of Open Innovation processes and, therefore, of creating value. A methodology is defined to settle a procedure which helps to select the most relevant Intellectual Capital value drivers and to provide Communities of Innovation with strategic and managerial guidelines in sustaining Open Innovation paradigm. An application of the methodology is developed within a specifically addressed project and its results are hereafter examined.

Blast Induced Ground Shock Effects on Pile Foundations

Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.

Viewers of Advertisements in Television and Cinema in the Shadow of Visuality

Despite the internet, which is one of the mass media that has become quite common in recent years, the relationship of Advertisement with Television and Cinema, which have always drawn attention of researchers as basic media and where visual use is in the foreground, have also become the subject of various studies. Based on the assumption that the known fundamental effects of advertisements on consumers are closely related to the creative process of advertisements as well as the nature and characteristics of the medium where they are used, these basic mass media (Television and Cinema) and the consumer motivations of the advertisements they broadcast have become a focus of study. Given that the viewers of the mass media in question have shifted from a passive position to a more active one especially in recent years and approach contents of advertisements, as they do all contents, in a more critical and “pitiless" manner, it is possible to say that individuals make more use of advertisements than in the past and combine their individual goals with the goals of the advertisements. This study, which aims at finding out what the goals of these new individual advertisement use are, how they are shaped by the distinct characteristics of Television and Cinema, where visuality takes precedence as basic mass media, and what kind of places they occupy in the minds of consumers, has determined consumers- motivations as: “Entertainment", “Escapism", “Play", “Monitoring/Discovery", “Opposite Sex" and “Aspirations and Role Models". This study intends to reveal the differences or similarities among the needs and hence the gratifications of viewers who consume advertisements on Television or at the Cinema, which are two basic media where visuality is prioritized.

Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.

Simulation of Thin Film Relaxation by Buried Misfit Networks

The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.

The Wine List Design by Upscale Restaurants

This paper investigates the structure and content of the wine lists in upscale restaurants in Portugal (N=61). The respondents considered that a wine list should be easy to use and to modify, welldesigned, modern and varied. Respondents also stated that they perform on average 6 revisions to the wine list per year. The restaurant owner, the restaurant manager and the sommelier were the main persons in charge of the wine list design. One of the most important reasons for selecting wines across most restaurants was to ‘complement the menu’ and ‘pairing food with wine’. Restaurants also reported to be relatively independent from suppliers and magazine evaluations. Moreover, this work revealed that the restaurant wine list is considered by restaurateurs as a strategic tool to sell wine as a complement to the menu, to improve customer satisfaction and loyalty, to increase restaurant value and to enhance a successful positioning.

Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms

Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.

Utilization of Wheat Bran as Bed Material in Solid State Bacterial Production of Lactic Acid with Various Nitrogen Sources

The present experimental investigation brings about a comparative study of lactic acid production by pure strains of Lactobacilli (1) L. delbreuckii (NCIM2025), (2) L. pentosus (NCIM 2912), (3) Lactobacillus sp.(NCIM 2734, (4) Lactobacillus sp. (NCIM2084) and coculture of strain-1 and Stain-2 in solid bed of wheat bran, under the influence of different nitrogen sources such as baker-s yeast, meat extract and proteose peptone. Among the pure cultures, strain-3 attained lowest pH value of 3.44, hence highest acid formation 46.41 g/L, while the coculture attained an overall maximum value 47.56 g/L lactic acid (pH 3.38) at 15 g/L and 20 g/L level of baker-s yeast, respectively.

Design of an Stable GPC for Nonminimum Phase LTI Systems

The current methods of predictive controllers are utilized for those processes in which the rate of output variations is not high. For such processes, therefore, stability can be achieved by implementing the constrained predictive controller or applying infinite prediction horizon. When the rate of the output growth is high (e.g. for unstable nonminimum phase process) the stabilization seems to be problematic. In order to avoid this, it is suggested to change the method in the way that: first, the prediction error growth should be decreased at the early stage of the prediction horizon, and second, the rate of the error variation should be penalized. The growth of the error is decreased through adjusting its weighting coefficients in the cost function. Reduction in the error variation is possible by adding the first order derivate of the error into the cost function. By studying different examples it is shown that using these two remedies together, the closed-loop stability of unstable nonminimum phase process can be achieved.

Full Potential Study of Electronic and Optical Properties of NdF3

We report the electronic structure and optical properties of NdF3 compound. Our calculations are based on density functional theory (DFT) using the full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA, and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for NdF3 compound stays low till 7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.