Treatment of Acid Mine Drainage Using Un- Activated Bentonite and Limestone

The use of un-activated bentonite, and un-activated bentonite blended with limestone for the treatment of acid mine drainage (AMD) was investigated. Batch experiments were conducted in a 5 L PVC reactor. Un-activated bentonite on its own did not effectively neutralize and remove heavy metals from AMD. The final pH obtained was below 4 and the metal removal efficiency was below 50% for all the metals when bentonite solid loadings of 1, 5 and 10% were used. With un-activated bentonite (1%) blended with 1% limestone, the final pH obtained was approximately 7 and metal removal efficiencies were greater than 60% for most of the metals. The Langmuir isotherm gave the best fit for the experimental data giving correlation coefficient (R2) very close to 1. Thus, it was concluded that un-activated bentonite blended with limestone is suitable for potential applications in removing heavy metals and neutralizing AMD.

Solving a New Mixed-Model Assembly LineSequencing Problem in a MTO Environment

In the last decades to supply the various and different demands of clients, a lot of manufacturers trend to use the mixedmodel assembly line (MMAL) in their production lines, since this policy make possible to assemble various and different models of the equivalent goods on the same line with the MTO approach. In this article, we determine the sequence of (MMAL) line, with applying the kitting approach and planning of rest time for general workers to reduce the wastages, increase the workers effectiveness and apply the sector of lean production approach. This Multi-objective sequencing problem solved in small size with GAMS22.2 and PSO meta heuristic in 10 test problems and compare their results together and conclude that their results are very similar together, next we determine the important factors in computing the cost, which improving them cost reduced. Since this problem, is NPhard in large size, we use the particle swarm optimization (PSO) meta-heuristic for solving it. In large size we define some test problems to survey it-s performance and determine the important factors in calculating the cost, that by change or improved them production in minimum cost will be possible.

Influence of Technology Parameters on Properties of AA6061/SiC Composites Produced By Kobo Method

The influence of extrusion parameters on surface quality and properties of AA6061+x% vol. SiC (x = 0; 2,5; 5; 7,5;10) composites was discussed in this paper. The averages size of AA6061 and SiC particles were 10.6 μm and 0.42 μm, respectively. Two series of composites (I - compacts were preheated at extrusion temperature through 0.5 h and cooled by water directly after process; II - compacts were preheated through 3 hours and were not cooled) were consolidated via powder metallurgy processing and extruded by KoBo method. High values of density for both series of composites were achieved. Better surface quality was observed for II series of composites. Moreover, for these composites lower (compared to I series) but more uniform strength properties over the cross-section of the bar were noticed. Microstructure and Young-s modulus investigations were made.

Prioritizing Service Quality Dimensions: A Neural Network Approach

One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.

Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Characterization of the LMOS with Different Channel Structure

In this paper, we propose a novel metal oxide semiconductor field effect transistor with L-shaped channel structure (LMOS), and several type of L-shaped structures are also designed, studied and compared with the conventional MOSFET device for the same average gate length (Lavg). The proposed device electrical characteristics are analyzed and evaluated by three dimension (3-D) ISE-TCAD simulator. It can be confirmed that the LMOS devices have higher on-state drain current and both lower drain-induced barrier lowering (DIBL) and subthreshold swing (S.S.) than its conventional counterpart has. In addition, the transconductance and voltage gain properties of the LMOS are also improved.

Investigation of the GFR2400 Reactivity Control System

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiCcladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Study on Characterization of Tuncbilek Fly Ash

Fly ash is one of the residues generated in combustion, and comprises the fine particles that rise with the flue gases. Ash which does not rise is termed bottom ash [1]. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. Released waste from the thermal power plants is caused very significant problems as known. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of Tuncbilek fly ash like low-cost adsorbents for heavy metal adsorption. First of all, Tuncbilek fly ash was characterized. For this purpose; analysis such as sieve analysis, XRD, XRF, SEM and FT-IR were performed.

Effect of Recombinant Human Follicle Stimulating Hormone on Meiotic Competence of In Vitro Grown Nili Ravi Buffalo Oocytes

In the present study, the response of Nili Ravi buffalo oocytes to recombinant human follicle stimulating hormone (rhFSH) (Organon) on meiotic maturation in vitro was examined. Oocytes were matured in vitro in medium containing either 0 or 0.05 IU/ ml rhFSH and the stage of nuclear maturation recorded after 24 hours. The percentage of oocytes in the control group undergoing germinal vesicle breakdown (GVBD) observed after 24 hours of culture was 29 % whereas as in rhFSH group the percentage was 10 % were at this stage (P< 0.001).Thus in the presence of rhFSH, a significantly greater number of oocytes had progressed to the more advanced stages of nuclear maturation. Indeed, the maturation of GV (Germinal Vesicle) stage oocytes to the metaphase II (M II) stage after 24 hours was significantly (P< 0.0001) increased by the addition of rhFSH (82 % VS 47 %). The percentage of degenerated oocytes after 24 hours of culture was 24 % in control group, whereas in rhFSH group the percentage was 8 % after 24 hours. Degeneration of the oocytes after 24 hours was not significantly (P = 0. 9361) decreased.

Heavy Metal Concentrations in Fanworth (Cabombafurcata) from Lake Chini, Malaysia

Study was conducted to determine the concentration of copper, cadmium, lead and zinc in Cabomba furcata that found abundance in Lake Chini. This aquatic plant was collected randomly within the lake for heavy metal determination. Water quality measurement was undertaken in situ for temperature, pH, conductivity and dissolved oksigen using portable multi sensor probe YSI model 556. The C. furcata was digested using wet digestion method and heavy metal concentrations were analysed using Atomic Absorption Spectrometer (AAS) Perkin Elmer 4100B (flame method). Result of water quality classify Lake Chini between class II to class III using Malaysian Water Quality Standard. According to this standard, Lake Chini has moderate quality, which normal for natural lake. Heavy metal concentrations in C.furcata were low and found to be lower than the critical toxic value in aquatic plants. Oneway ANOVA test indicated the heavy metal concentrations in C.furcata were significantly differ between sampling location. Water quality and heavy metal concentrations indicates that Lake Chini was not receives anthropogenic load from nearby activities.

Investigation and Evalution of Swelling Kinetics Related to Biocopolymers Based on CMC poly(AA-co BuMC)

In this paper, we have focused on study of swelling kinetics and salt-sensitivity behavior of a superabsorbing hydrogel based on carboxymethylcellulose (CMC) and acrylic acid and 2- Buthyl methacrylate. The swelling kinetics of the hydrogels with various particle sizes was preliminary investigated as well. The swelling of the hydrogel showed a second order kinetics of swelling in water. In addition, swelling measurements of the synthesized hydrogels in various chloride salt solutions was measured. Results indicated that a swelling-loss with an increase in the ionic strength of the salt solutions.

Gas Detonation Forming by a Mixture of H2+O2 Detonation

Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2.

Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Envelope Echo Signal of Metal Sphere in the Fresh Water

An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.

Fabricating Protruded Micro-features on AA6061 Substrates by Hot Embossing Method

Metallic micro parts are playing an important role in micro-fabrication industry. Recently, we have demonstrated a new deformation mechanism for micro-formability of polycrystalline materials. Different depressed micro-features smaller than the grain size have been successfully fabricated on 6061 aluminum alloy (AA6061) substrates with good fidelity. To further verify this proposed deformation mechanism that grain size is not a limiting factor, we demonstrate here that in addition of depressed features, protruded micro-features on a polycrystalline substrate can similarly be fabricated.

An Experiment on Personal Archiving and Retrieving Image System (PARIS)

PARIS (Personal Archiving and Retrieving Image System) is an experiment personal photograph library, which includes more than 80,000 of consumer photographs accumulated within a duration of approximately five years, metadata based on our proposed MPEG-7 annotation architecture, Dozen Dimensional Digital Content (DDDC), and a relational database structure. The DDDC architecture is specially designed for facilitating the managing, browsing and retrieving of personal digital photograph collections. In annotating process, we also utilize a proposed Spatial and Temporal Ontology (STO) designed based on the general characteristic of personal photograph collections. This paper explains PRAIS system.

Effect of Spray Stand-off on Elasticity Modulus of Thermally Sprayed Coatings

The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).

Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts

Several trillion cigarettes produced worldwide annually lead to many thousands of kilograms of toxic waste. Cigarette butts (CBs) accumulate in the environment due to the poor biodegradability of the cellulose acetate filters. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Physico-mechanical properties of fired clay bricks manufactured with different percentages of CBs are reported and discussed. The results show that the density of fired bricks was reduced by up to 30 %, depending on the percentage of CBs incorporated into the raw materials. Similarly, the compressive strength of bricks tested decreased according to the percentage of CBs included in the mix. The thermal conductivity performance of bricks was improved by 51 and 58 % for 5 and 10 % CBs content respectively. Leaching tests were carried out to investigate the levels of possible leachates of heavy metals from the manufactured clay-CB bricks. The results revealed trace amounts of heavy metals.

Implementation of Watch Dog Timer for Fault Tolerant Computing on Cluster Server

In today-s new technology era, cluster has become a necessity for the modern computing and data applications since many applications take more time (even days or months) for computation. Although after parallelization, computation speeds up, still time required for much application can be more. Thus, reliability of the cluster becomes very important issue and implementation of fault tolerant mechanism becomes essential. The difficulty in designing a fault tolerant cluster system increases with the difficulties of various failures. The most imperative obsession is that the algorithm, which avoids a simple failure in a system, must tolerate the more severe failures. In this paper, we implemented the theory of watchdog timer in a parallel environment, to take care of failures. Implementation of simple algorithm in our project helps us to take care of different types of failures; consequently, we found that the reliability of this cluster improves.

Synchrotron X-ray based Investigation of Fe and Zn Atoms in Tissue Samples at Different Growth Stages

The zinc and iron environments in different growth stages have been studied with EXAFS and XANES with Brookhaven Synchrotron Light Source. Tissue samples included meat, organ, vegetable, leaf, and yeast. The project studied the EXAFS and XANES of tissue samples using Zn and Fe K-edges. Duck embryo samples show that brain and intestine would contain shorter EXFAS determined Zn-N/O bond; as with the cases of fresh yeast versus reconstituted live yeast and green leaf versus yellow leaf. The XANES Fourier transform characteristic-length would be useful as a functionality index for selected types of tissue samples in various physical states. The extension to the development of functional synchrotron imaging for tissue engineering application based on spectroscopic technique is discussed.