Approximate Solutions to Large Stein Matrix Equations

In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.

Verification of Protocol Design using UML - SMV

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

Localizing and Experiencing Electronic Questionnaires in an Educational Web Site

One of the main research methods in humanistic studies is the collection and process of data through questionnaires. This paper reports our experiences of localizing and adapting the phpESP package of electronic surveys, which led to a friendly on-line questionnaire environment offered through our department web site. After presenting the characteristics of this environment, we identify the expected benefits and present a questionnaire carried out through both the traditional and electronic way. We present the respondents' feedback and then we report the researchers' opinions.Finally, we propose ideas we intend to implement in order to further assist and enhance the research based on this web accessed,electronic questionnaire environment.

Laser Welded Ni-Cr Dental Alloys Inspection

Minor problems arising from optimizations by welding of fixed prostheses frameworks can be identified by macroscopic and microscopic visual inspection. The purpose of this study was to highlight the visible discontinuities present in the laser welds of dental Ni-Cr alloys. Ni-Cr base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using cast plates, preliminary tests were conducted by laser welding. Macroscopic visual inspection was done carefully to assess the defects of the welding rib. Electron microscopy images allowed visualization of small discontinuities, which escapes visual inspection. Making comparison to Ni-Cr alloys taken in the experiment and laser welded, after visual analysis, the best welds appear for Heraenium NA alloy.

Restarted GMRES Method Augmented with the Combination of Harmonic Ritz Vectors and Error Approximations

Restarted GMRES methods augmented with approximate eigenvectors are widely used for solving large sparse linear systems. Recently a new scheme of augmenting with error approximations is proposed. The main aim of this paper is to develop a restarted GMRES method augmented with the combination of harmonic Ritz vectors and error approximations. We demonstrate that the resulted combination method can gain the advantages of two approaches: (i) effectively deflate the small eigenvalues in magnitude that may hamper the convergence of the method and (ii) partially recover the global optimality lost due to restarting. The effectiveness and efficiency of the new method are demonstrated through various numerical examples.

The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code

This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.

Novel Sinusoidal Pulse Width Modulation with Least Correlated Noise

This paper presents a novel sinusoidal modulation scheme that features least correlated noise and high linearity. The modulation circuit, which is composed of a quantizer, a resonator, and a comparator, is capable of eliminating correlated modulation noise while doing modulation. The proposed modulation scheme combined with the linear quadratic optimal control is applied to a single-phase voltage source inverter and validated with the experiment results. The experiments show that the inverter supplies stable 60Hz 110V AC power with a total harmonic distortion of less than 1%, under the DC input variation from 190 V to 300 V and the output power variation from 0 to 600 W.

Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC

In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.

Face Tracking using a Polling Strategy

The colors of the human skin represent a special category of colors, because they are distinctive from the colors of other natural objects. This category is found as a cluster in color spaces, and the skin color variations between people are mostly due to differences in the intensity. Besides, the face detection based on skin color detection is a faster method as compared to other techniques. In this work, we present a system to track faces by carrying out skin color detection in four different color spaces: HSI, YCbCr, YES and RGB. Once some skin color regions have been detected for each color space, we label each and get some characteristics such as size and position. We are supposing that a face is located in one the detected regions. Next, we compare and employ a polling strategy between labeled regions to determine the final region where the face effectively has been detected and located.

Double-Diffusive Natural Convection with Marangoni and Cooling Effects

Double-diffusive natural convection in an open top square cavity and heated from the side is studied numerically. Constant temperatures and concentration are imposed along the right and left walls while the heat balance at the surface is assumed to obey Newton-s law of cooling. The finite difference method is used to solve the dimensionless governing equations. The numerical results are reported for the effect of Marangoni number, Biot number and Prandtl number on the contours of streamlines, temperature and concentration. The predicted results for the average Nusselt number and Sherwood number are presented for various parametric conditions. The parameters involved are as follows; the thermal Marangoni number, 0 ≤ MaT ≤1000 , the solutal Marangoni number, 0 1000 c ≤ Ma ≤ , the Biot number, 0 ≤ Bi ≤ 6 , Grashof number, 5 Gr = 10 and aspect ratio 1. The study focused on both flows; thermal dominated, N = 0.8 , and compositional dominated, N = 1.3 .

Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System: Effects of Ethylene Feed Position and O2/C2H4 Feed Molar Ratio

The effects of ethylene (C2H4) feed position and O2/C2H4 feed molar ratio on ethylene epoxidation in a parallel dielectric barrier discharge (DBD) were studied. The results showed that the ethylene feed position fraction of 0.5 and the feed molar ratio of O2/C2H4 of 0.2:1 gave the highest EO selectivity of 34.3% and the highest EO yield of 5.28% with low power consumptions of 2.11×10-16 Ws/molecule of ethylene converted and 6.34×10-16 Ws/molecule of EO produced when the DBD system was operated under the best conditions: an applied voltage of 19 kV, an input frequency of 500 Hz and a total feed flow rate of 50 cm3/min. The separate ethylene feed system provided much higher epoxidation activity as compared to the mixed feed system which gave EO selectivity of 15.5%, EO yield of 2.1% and the power consumption of EO produced of 7.7×10-16 Ws/molecule.

Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects

Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.

A Finite Difference Calculation Procedure for the Navier-Stokes Equations on a Staggered Curvilinear Grid

A new numerical method for solving the twodimensional, steady, incompressible, viscous flow equations on a Curvilinear staggered grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well-established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation in a manner similar to the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results obtained from the present method are based on the first-order upwind scheme for the convective terms, but the methodology can easily be modified to accommodate higher order differencing schemes.

Parametric Analysis of Effective Factors on the Seismic Rehabilitation of the Foundations by Network Micropile

The main objective of seismic rehabilitation in the foundations is decreasing the range of horizontal and vertical vibrations and omitting high frequencies contents under the seismic loading. In this regard, the advantages of micropiles network is utilized. Reduction in vibration range of foundation can be achieved by using high dynamic rigidness module such as deep foundations. In addition, natural frequency of pile and soil system increases in regard to rising of system rigidness. Accordingly, the main strategy is decreasing of horizontal and vertical seismic vibrations of the structure. In this case, considering the impact of foundation, pile and improved soil foundation is a primary concern. Therefore, in this paper, effective factors are studied on the seismic rehabilitation of foundations applying network micropiles in sandy soils with nonlinear reaction.

Entropy Based Data Hiding for Document Images

In this paper we present a novel technique for data hiding in binary document images. We use the concept of entropy in order to identify document specific least distortive areas throughout the binary document image. The document image is treated as any other image and the proposed method utilizes the standard document characteristics for the embedding process. Proposed method minimizes perceptual distortion due to embedding and allows watermark extraction without the requirement of any side information at the decoder end.

Automation of Packing Cell in Fresh Fish Facilities

The problem discussed in this paper involves packing fresh fish fileet of the northern Cod into a standard square container. The fish is first cleaned and split and then collected on a belt ready to be stacked in a container. The aim of our work is to pack the fish into the container with constraints on the amount of overlap allowed for the fileets. The current focus is to design a packing cell that can be real-time and of practical use, while finding the optimal solution to the degree of overlap and minimise the unused space of the container.

Investigation of Advanced Oxidation Process for the Removal of Residual Carbaryl from Drinking Water Resources

A laboratory set-up was designed to survey the effectiveness of UV/O3 advanced oxidation process (AOP) for the removal of Carbaryl from polluted water in batch reactor. The study was carried out by UV/O3 process for water samples containing 1 to 20 mg/L of Carbaryl in distilled water. Also the range of drinking water resources adjusted in synthetic water and effects of contact time, pH and Carbaryl concentration were studied. The residual pesticide concentration was determined by applying high performance liquid chromatography (HPLC). The results indicated that increasing of retention time and pH, enhances pesticide removal efficiency. The removal efficiency has been affected by pesticide initial concentration. Samples with low pesticide concentration showed a remarkable removal efficiency compared to the samples with high pesticide concentration. AOP method showed the removal efficiencies of 80% to 100%. Although process showed high performance for removal of pesticide from water samples, this process has different disadvantages including complication, intolerability, difficulty of maintenance and equipmental and structural requirements.

A Systematic Approach for Design a Low-Cost Mobility Assistive Device for Elderly People

Walking and sit to stand are activities carried out by all the people many times during the day, but physical disabilities due to age and diseases create needs of assistive devices to help elderly people during their daily life. This study aims to study the different types and mechanisms of the assistive devices. We will analyze the limitations and the challenges faced by the researchers in this field. We will introduce the Assistive Device developed at the Egypt-Japan University of Science and Technology, named E-JUST Assistive Device (EJAD). EJAD will be a low cost intelligent assistive device to help elders in walking and sit-to-stand activities.

Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube

In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.

Study of Energy Efficiency Opportunities in UTHM

Sustainable energy usage has been recognized as one of the important measure to increase the competitiveness of the nation globally. Many strong emphases were given in the Ninth Malaysia Plan (RMK9) to improve energy efficient especially to government buildings. With this in view, a project to investigate the potential of energy saving in selected building in Universiti Tun Hussein Onn Malaysia (UTHM) was carried out. In this project, a case study involving electric energy consumption of the academic staff office building was conducted. The scope of the study include to identify energy consumption in a selected building, to study energy saving opportunities, to analyse cost investment in term of economic and to identify users attitude with respect to energy usage. The MS1525:2001, Malaysian Standard -Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. Several energy efficient measures were considered and their merits and priority were compared. Improving human behavior can reduce energy consumption by 6% while technical measure can reduce energy consumption by 44%. Two economic analysis evaluation methods were applied; they are the payback period method and net present value method.