PIL Theory

The curvature space-time by the presence of material, this deformation must present a pattern of deformation, not random. Space is uniform, elastic and any modification that occurs in one part, causes a change in another. This deformation exists, must be a constant value and is independent of the observer, and relates the amount of matter, the force caused by the curvature of space and surface space. This unit of space is defined in this study as PIL and represents a constant area of space, deformable in the direction and sense of the center of mass of the body. The PIL is curved and connected to the center of mass of the Earth, to get to that point, through all matter, thus forming part of any place between particles at atomic and subatomic levels. At these levels the space between each particle is flat, unlike the macro where the space curves.

A Robust Diverged Localization and Recognition of License Registration Characters

Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments. 

Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation

Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results. 

Effect of Self-Compacting Concrete and Aggregate Size on Anchorage Performance at Highly Congested Reinforcement Regions

At highly congested reinforcement regions, which is common at beam-column joint area, clear spacing between parallel bars becomes less than maximum normal aggregate size (20mm) which has not been addressed in any design code and specifications. Limited clear spacing between parallel bars (herein after thin cover) is one of the causes which affect anchorage performance. In this study, an experimental investigation was carried out to understand anchorage performance of reinforcement in Self-Compacting Concrete (SCC) and Normal Concrete (NC) at highly congested regions under uni-axial tensile loading.  Column bar was pullout whereas; beam bars were offset from column reinforcement creating thin cover as per site condition. Two different sizes of coarse aggregate were used for NC (20mm and 10mm). Strain gauges were also installed along the bar in some specimens to understand the internal stress mechanism. Test results reveal that anchorage performance is affected at highly congested reinforcement region in NC with maximum aggregate size 20mm whereas; SCC and Small Aggregate (10mm) gives better structural performance. 

Improving Knowledge Management Practices in the South African Healthcare System

Knowledge is increasingly recognised in this, the knowledge era, as a strategic resource, by public sector organisations, in view of the public sector reform initiatives. People and knowledge play a vital role in attaining improved organisational performance and high service quality. Many government departments in the public sector have started to realise the importance of knowledge management in streamlining their operations and processes. This study focused on knowledge management in the public healthcare service organisations, where the concept of service provider competitiveness pales to insignificance, considering the huge challenges emanating from the healthcare and public sector reforms. Many government departments are faced with challenges of improving organisational performance and service delivery, improving accountability, making informed decisions, capturing the knowledge of the aging workforce, and enhancing partnerships with stakeholders. The purpose of this paper is to examine the knowledge management practices of the Gauteng Department of Health in South Africa, in order to understand how knowledge management practices influence improvement in organisational performance and healthcare service delivery. This issue is explored through a review of literature on dominant views on knowledge management and healthcare service delivery, as well as results of interviews with, and questionnaire responses from, the general staff of the Gauteng Department of Health. Web-based questionnaires, face-to-face interviews and organisational documents were used to collect data. The data were analysed using both the quantitative and qualitative methods. The central question investigated was: To what extent can the conditions required for successful knowledge management be observed, in order to improve organisational performance and healthcare service delivery in the Gauteng Department of Health. The findings showed that the elements of knowledge management capabilities investigated in this study, namely knowledge creation, knowledge sharing and knowledge application, have a positive, significant relationship with all measures of organisational performance and healthcare service delivery. These findings thus indicate that by employing knowledge management principles, the Gauteng Department of Health could improve its ability to achieve its operational goals and objectives, and solve organisational and healthcare challenges, thereby improving organisational performance and enhancing healthcare service delivery in Gauteng.

Control of Braking Force under Loaded and Empty Conditions on Two Wheeler

The Automobile Braking System has a crucial role for safety of the passenger and riding quality of the vehicle. The braking force mainly depends on normal reaction on the wheel and the co-efficient of friction between the tire and the road surface. Whenever a vehicle is loaded, the normal reaction on the rear wheel is increased. Thus the amount of braking force required to halt the vehicle with minimum stopping distance, is based on the pillion load on the vehicle. In this work, in order to vary the braking force in two wheelers, the mechanical leverage which operates the master cylinder is varied based on the pillion load. Thus the amount of braking force developed between ground and tire is varied. This optimum braking force on the disc brake helps in attaining the minimum vehicle stopping distance. In addition to that, it also helps in preventing sliding. Thus the system results in reducing the stopping distance of the two wheelers and providing a better braking efficiency than the conventional braking system.

The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces

This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.

Low Power Capacitance-to-Voltage Converter for Magnetometer Interface IC

This paper presents the design and implementation of a fully integrated Capacitance-to-Voltage Converter (CVC) as the analog front-end for magnetometer interface IC. The application demands very low power solution operating in the frequency of around 20 KHz. The design adapts low power architecture to create low noise electronic interface for Capacitive Micro-machined Lorentz force magnetometer sensor. Using a 0.18-μm CMOS process, simulation results of this interface IC show that the proposed CVC can provide 33 dB closed loop gain, 20 nV/√Hz input referred noise at 20 KHz, while consuming 65 μA current from 1.8-V supply. 

Accuracy of Displacement Estimation and Selection of Capacitors for a Four Degrees of Freedom Capacitive Force Sensor

Force sensor has been used as requisite for knowing information on the amount and the directions of forces on the skin surface. We have developed a four-degrees-of-freedom capacitive force sensor (approximately 20×20×5 mm3) that has a flexible structure and sixteen parallel plate capacitors. An iterative algorithm was developed for estimating four displacements from the sixteen capacitances using fourth-order polynomial approximation of characteristics between capacitance and displacement. The estimation results from measured capacitances had large error caused by deterioration of the characteristics. In this study, effective capacitors had major information were selected on the basis of the capacitance change range and the characteristic shape. Maximum errors in calibration and non-calibration points were 25%and 6.8%.However the maximum error was larger than desired value, the smallness of averaged value indicated the occurrence of a few large error points. On the other hand, error in non-calibration point was within desired value.  

Analysis of the Energetic Feature of the Loaded Gait with Variation of the Trunk Flexion Angle

The purpose of the research is to investigate the energetic feature of the backpack load on soldier’s gait with variation of the trunk flexion angle. It is believed that the trunk flexion variation of the loaded gait may cause a significant difference in the energy cost which is often in practice in daily life. To this end, seven healthy Korea military personnel participated in the experiment and are tested under three different walking postures comprised of the small, natural and large trunk flexion. There are around 5 degree differences of waist angle between each trunk flexion. The ground reaction forces were collected from the force plates and motion kinematic data are measured by the motion capture system. Based on these data, the impulses, momentums and mechanical works done on the center of body mass (COM) during the double support phase were computed. The result shows that the push-off and heel strike impulse are not relevant to the trunk flexion change, however the mechanical work by the push-off and heel strike were changed by the trunk flexion variation. It is because the vertical velocity of the COM during the double support phase is increased significantly with an increase in the trunk flexion. Therefore, we can know that the gait efficiency of the loaded gait depends on the trunk flexion angle. Also, even though the gravitational impulse and pre-collision momentum are changed by the trunk flexion variation, the after-collision momentum is almost constant regardless of the trunk flexion variation.

Strengthening of RC Beams Containing Large Opening at Flexure with CFRP laminates

This paper presents the study of strengthening R/C beams with large circular and square opening located at flexure zone by Carbon Fiber Reinforced Polymer (CFRP) laminates. A total of five beams were tested to failure under four point loading to investigate the structural behavior including crack patterns, failure mode, ultimate load and load deflection behaviour. Test results show that large opening at flexure reduces the beam capacity and stiffness; and increases cracking and deflection. A strengthening configuration was designed for each un-strengthened beams based on their respective crack patterns. CFRP laminates remarkably restore the beam capacity of beam with large circular opening at flexure location while 10% re-gain of beam capacity with square opening. The use of CFRP laminates with the designed strengthening configuration could significantly reduce excessive cracking and deflection and increase the ultimate capacity and stiffness of beam.

New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring

This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.

Secondary Ion Mass Spectrometry of Proteins

The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.

A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

The Problems of Legal Regulation of Intellectual Property Rights in Innovation Activities in Russia (Institutional Approach)

Part IV of the Civil Code of the Russian Federation dedicated to legal regulation of Intellectual property rights came into force in 2008. It is a first attempt of codification in Intellectual property sphere in Russia. That is why a lot of new norms appeared. The main problem of the Russian Civil Code (part IV) is that many rules (norms of Law) contradict the norms of International Intellectual property Law (i.e. protection of inventions, creations, ideas, know-how, trade secrets, innovations). Intellectual property rights protect innovations and creations and reward innovative and creative activity. Intellectual property rights are international in character and in that respect they fit in rather well with the economic reality of the global economy. Inventors prefer not to take out a patent for inventions because it is a very difficult procedure, it takes a lot of time and is very expensive. That-s why they try to protect their inventions as ideas, know-how, confidential information. An idea is the main element of any object of Intellectual property (creation, invention, innovation, know-how, etc.). But ideas are not protected by Civil Code of Russian Federation. The aim of the paper is to reveal the main problems of legal regulation of Intellectual property in Russia and to suggest possible solutions. The authors of this paper have raised these essential issues through different activities. Through the panel survey, questionnaires which were spread among the participants of intellectual activities the main problems of implementation of innovations, protecting of the ideas and know-how were identified. The implementation of research results will help to solve economic and legal problems of innovations, transfer of innovations and intellectual property.1

The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Value–based Group Decision on Support Bridge Selection

Value-based group decision is very complicated since many parties involved. There are different concern caused by differing preferences, experiences, and background. Therefore, a support system is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. The support system is based on combination between value-based analysis, multi criteria group decision making based on satisfying options, and negotiation process based on coalition formation. This paper presents the group decision and negotiation on the selection of suitable material for a support bridge structure involving three decision makers, who are an estate manager, a project manager, and an engineer. There are three alternative solutions for the material of the support bridge structure, which are (a1) steel structure, (a2) reinforced concrete structure and (a3) wooden structure.

Examining Organizational Improvisation: The Role of Strategic Reasoning and Managerial Factors

Recent environmental turbulence including financial crisis, intensified competitive forces, rapid technological change and high market turbulence have dramatically changed the current business climate. The managers firms have to plan and decide what the best approaches that best fit their firms in order to pursue superior performance. This research aims to examine the influence of strategic reasoning and top level managers- individual characteristics on the effectiveness of organizational improvisation and firm performance. Given the lack of studies on these relationships in the previous literature, there is significant contribution to the body of knowledge as well as for managerial practices. 128 responses from top management of technology-based companies in Malaysia were used as a sample. Three hypotheses were examined and the findings confirm that (a) there is no relationship between intuitive reasoning and organizational improvisation but there is a link between rational reasoning and organizational improvisation, (b) top level managers- individual characteristics as a whole affect organizational improvisation; and (c) organizational improvisation positively affects firm performance. The theoretical and managerial implications were discussed in the conclusions.

Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys

The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.