Building a Service-Centric Business Model in SMEs in the Business-to-Business Context

Building a service-centric business model requires new knowledge and capabilities in companies. This paper enlightens the challenges small and medium sized firms (SMEs) face when developing their service-centric business models. This paper examines the premise for knowledge transfer and capability development required. The objective of this paper is to increase knowledge about SME-s transformation to service-centric business models.This paper reports an action research based case study. The paper provides empirical evidence from three case companies. The empirical data was collected through multiple methods. The findings of the paper are: First, the developed model to analyze the current state in companies. Second, the process of building the service – centric business models. Third, the selection of suitable service development methods. The lack of a holistic understanding on service logic suggests that SMEs need practical and easy to use methods to improve their business

Statistical Description of Wave Interactions in 1D Defect Turbulence

We have investigated statistical properties of the defect turbulence in 1D CGLE wherein many body interaction is involved between local depressing wave (LDW) and local standing wave (LSW). It is shown that the counting number fluctuation of LDW is subject to the sub-Poisson statistics (SUBP). The physical origin of the SUBP can be ascribed to pair extinction of LDWs based on the master equation approach. It is also shown that the probability density function (pdf) of inter-LDW distance can be identified by the hyper gamma distribution. Assuming a superstatistics of the exponential distribution (Poisson configuration), a plausible explanation is given. It is shown further that the pdf of amplitude of LDW has a fattail. The underlying mechanism of its fluctuation is examined by introducing a generalized fractional Poisson configuration.

Shot Transition Detection with Minimal Decoding of MPEG Video Streams

Digital libraries become more and more necessary in order to support users with powerful and easy-to-use tools for searching, browsing and retrieving media information. The starting point for these tasks is the segmentation of video content into shots. To segment MPEG video streams into shots, a fully automatic procedure to detect both abrupt and gradual transitions (dissolve and fade-groups) with minimal decoding in real time is developed in this study. Each was explored through two phases: macro-block type's analysis in B-frames, and on-demand intensity information analysis. The experimental results show remarkable performance in detecting gradual transitions of some kinds of input data and comparable results of the rest of the examined video streams. Almost all abrupt transitions could be detected with very few false positive alarms.

Noninvasive Assessment of Low Power Laser Radiation Effect on Skin Wound Healing Using Infrared Thermography

The goal of this paper is to examine the effects of laser radiation on the skin wound healing using infrared thermography as non-invasive method for the monitoring of the skin temperature changes during laser treatment. Thirty Wistar rats were used in this study. A skin lesion was performed at the leg on all rats. The animals were exposed to laser radiation (λ = 670 nm, P = 15 mW, DP = 16.31 mW/cm2) for 600 s. Thermal images of wound were acquired before and after laser irradiation. The results have demonstrated that the tissue temperature decreases from 35.5±0.50°C in the first treatment day to 31.3±0.42°C after the third treatment day. This value is close to the normal value of the skin temperature and indicates the end of the skin repair process. In conclusion, the improvements in the wound healing following exposure to laser radiation have been revealed by infrared thermography.

Minimum Fluidization Velocities of Binary-Solid Mixtures: Model Comparison

An accurate prediction of the minimum fluidization velocity is a crucial hydrodynamic aspect of the design of fluidized bed reactors. Common approaches for the prediction of the minimum fluidization velocities of binary-solid fluidized beds are first discussed here. The data of our own careful experimental investigation involving a binary-solid pair fluidized with water is presented. The effect of the relative composition of the two solid species comprising the fluidized bed on the bed void fraction at the incipient fluidization condition is reported and its influence on the minimum fluidization velocity is discussed. In this connection, the capability of packing models to predict the bed void fraction is also examined.

State-Space PD Feedback Control

A challenged control problem is when the performance is pushed to the limit. The state-derivative feedback control strategy directly uses acceleration information for feedback and state estimation. The derivative part is concerned with the rateof- change of the error with time. If the measured variable approaches the set point rapidly, then the actuator is backed off early to allow it to coast to the required level. Derivative action makes a control system behave much more intelligently. A sensor measures the variable to be controlled and the measured in formation is fed back to the controller to influence the controlled variable. A high gain problem can be also formulated for proportional plus derivative feedback transformation. Using MATLAB Simulink dynamic simulation tool this paper examines a system with a proportional plus derivative feedback and presents an automatic implementation of finding an acceptable controlled system. Using feedback transformations the system is transformed into another system.

A Numerical Study of the Effect of Side-Dump Angle on Fuel Droplets Sizing in a Three- Dimensional Side-Dump Combustor

A numerical study on the effect of side-dump angle on fuel droplets sizing and effective mass fraction have been investigated in present paper. The mass of fuel vapor inside the flammability limit is named as the effective mass fraction. In the first step we have considered a side-dump combustor with dump angle of 0o (acrossthe cylinder) and by increasing the entrance airflow velocity from 20 to 30, 40 and 50 (m/s) respectively, the mean diameter of fuel droplets sizing and effective mass fraction have been studied. After this step, we have changed the dump angle from 0o to 30o,45o and finally 60o in direction of cylinderand also we have increased the entrance airflow velocity from 20 up to 50 (m/s) with the amount of growth of 10(m/s) in each step, to examine its effects on fuel droplets sizing as well as effective mass fraction. With rise of entrance airflow velocity, these calculations are repeated in each step too. The results show, with growth of dump-angle the effective mass fraction has been decreased and the mean diameter of droplets sizing has been increased. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multicomponent code for the analysis of chemically reacting flows with sprays, is used.

Effect of Initial Conditions on Aerodynamic and Acoustic Characteristics of High Subsonic Jets from Sharp Edged Circular Orifice

The present work involves measurements to examine the effects of initial conditions on aerodynamic and acoustic characteristics of a Jet at M=0.8 by changing the orientation of sharp edged orifice plate. A thick plate with chamfered orifice presented divergent and convergent openings when it was flipped over. The centerline velocity was found to decay more rapidly for divergent orifice and that was consistent with the enhanced mass entrainment suggesting quicker spread of the jet compared with that from the convergent orifice. The mixing layer region elucidated this effect of initial conditions at an early stage – the growth was found to be comparatively more pronounced for the divergent orifice resulting in reduced potential core size. The acoustic measurements, carried out in the near field noise region outside the jet within potential core length, showed the jet from the divergent orifice to be less noisy. The frequency spectra of the noise signal exhibited that in the initial region of comparatively thin mixing layer for the convergent orifice, the peak registered a higher SPL and a higher frequency as well. The noise spectra and the mixing layer development suggested a direct correlation between the coherent structures developing in the initial region of the jet and the noise captured in the surrounding near field.

Examining Organizational Improvisation: The Role of Strategic Reasoning and Managerial Factors

Recent environmental turbulence including financial crisis, intensified competitive forces, rapid technological change and high market turbulence have dramatically changed the current business climate. The managers firms have to plan and decide what the best approaches that best fit their firms in order to pursue superior performance. This research aims to examine the influence of strategic reasoning and top level managers- individual characteristics on the effectiveness of organizational improvisation and firm performance. Given the lack of studies on these relationships in the previous literature, there is significant contribution to the body of knowledge as well as for managerial practices. 128 responses from top management of technology-based companies in Malaysia were used as a sample. Three hypotheses were examined and the findings confirm that (a) there is no relationship between intuitive reasoning and organizational improvisation but there is a link between rational reasoning and organizational improvisation, (b) top level managers- individual characteristics as a whole affect organizational improvisation; and (c) organizational improvisation positively affects firm performance. The theoretical and managerial implications were discussed in the conclusions.

The Effect of Repeated Reading on Student Fluency: Does Practice Always Make Perfect?

Fluency is a skill that, unfortunately, many students lack. This deficiency causes students to be frustrated with, and overwhelmed by, the act of reading. However, research suggests that the repeated reading method may help students to improve their fluency. This study examines the effects of repeated readings on student fluency. The study-s overarching question is: What effect do increases in repeated reading have on reading fluency among middle school students from diverse backgrounds? More specifically, the authors examine whether repeated reading improves the fluency, reading speed, reading-oriented self-esteem, and confidence of students of diverse academic abilities, socio-economics statuses, and racial and ethnic backgrounds. To examine these questions the authors conducted a study using repeated reading strategies with a sample of students from an urban, middle school in the southeastern United States. We found that, on average, the use of repeated reading strategies increased students- fluency, words per minute (wpm) reading score, reading-oriented self-esteem, and confidence.

The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection

The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers.

Finite Element Modelling of Ground Vibrations Due to Tunnelling Activities

This paper presents the use of three-dimensional finite elements coupled with infinite elements to investigate the ground vibrations at the surface in terms of the peak particle velocity (PPV) due to construction of the first bore of the Dublin Port Tunnel. This situation is analysed using a commercially available general-purpose finite element package ABAQUS. A series of parametric studies is carried out to examine the sensitivity of the predicted vibrations to variations in the various input parameters required by finite element method, including the stiffness and the damping of ground. The results of this study show that stiffness has a more significant effect on the PPV rather than the damping of the ground.

Moving from Rule-based to Principle-based in Public Sector: Preparers' Perspective

The move from cash accounting to accrual accounting, or rule-based to principle-based accounting, by many governments is part of an ongoing efforts in promoting a more business-like and performance-focused public sector. Using questionnaire responses from preparers of financial statements of public universities in Malaysia, this study examines the implementation challenges and benefits of principle-based accounting. Results from these responses suggest that most respondents perceived significant costs would be incurred in relation to staff training and recruitment of staffs with relevant technical knowledge. In addition, most respondents also perceived that there will be significant changes in the current accounting system and structure in order to comply with the principle-based accounting requirements. However, most respondents perceived that these changes might not result in significant benefits for management purposes, for example, financial management, budgeting and allocation of resources. Nevertheless, most respondents perceived that principle-based accounting information would facilitate the monitoring function of the board. The general perception is that adoption of principle-based accounting information is not significantly useful than rule-based accounting information is expected to change over time as preparers of the financial statements gradually understand and appreciate the benefits of principle-based accounting information. This infers that the perceived usefulness of different accounting system is a function of familiarity by the preparers.

A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference

Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.

Effects of Carbonation on the Microstructure and Macro Physical Properties of Cement Mortar

The objective of this work was to examine the changes in the microstructure and macro physical properties caused by the carbonation of normalised CEM II mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. On the microstructure scale, the evolutions of the cumulative pore volume, pore size distribution, and specific surface area during carbonation were calculated from the adsorption desorption isotherms of nitrogen. We also examined the evolution of macro physical properties such as the porosity accessible to water, the gas permeability, and thermal conductivity. The conflict between the results of nitrogen porosity and water porosity indicated that the porous domains explored using these two techniques are different and help to complementarily evaluate the effects of carbonation. This is a multi-scale study where results on microstructural changes can help to explain the evolution of macro physical properties.

Sustainable Development in Disaster Affected Rural Areas: The Case of Dinar Villages

Post-disaster reconstruction projects offer opportunities to facilitate physical, social and economic development and to reduce future hazard vulnerability long after the disasters. Sustainability of post-disaster reconstruction project conducted in the villages of Dinar following the 1995 earthquake was investigated in this paper. Officials of the Government who were involved in the project were interviewed. Besides, two field surveys were done in 12 villages of Dinar in winter months of 2008. Beneficiaries were interviewed and physical, socio-cultural and economic impacts of the reconstruction were examined. The research revealed that the postdisaster reconstruction project has negative aspects from the point view of sustainability. The physical, socio-cultural and economic factors were not considered during decision making process of the project.

Leadership Branding for Sustainable Customer Engagement

The purpose of this paper is to examine the inter relationships among various leadership branding constructs of entrepreneurs in small and medium sized enterprises (SMEs). We employ a quantitative structural equation modeling through a new leadership branding engagement model comprises constructs of leader-s or entrepreneur-s personality, branding practice and customer engagement. The results confirm that there are significant relationships between the three constructs and the major fit indices indicate that the data fits the proposed model. The findings provide insights and fill in the literature gaps on statistically validated representation of leadership branding for SMEs across new economic regions of Malaysia that may implicate other economic zones with similar situations. This study extends the establishment of a leadership branding engagement model with a new mechanism of using leaders- personality as a predictor to branding practice and customer engagement performance.

CART Method for Modeling the Output Power of Copper Bromide Laser

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Study on Crater Detection Using FLDA

In this paper, we validate crater detection in moon surface image using FLDA. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) project aiming at the pin-point landing to the moon surface. The point where the lander should land is judged by the position relations of the craters obtained via camera, so the real-time image processing becomes important element. Besides, in the SLIM project, 400kg-class lander is assumed, therefore, high-performance computers for image processing cannot be equipped. We are studying various crater detection methods such as Haar-Like features, LBP, and PCA. And we think these methods are appropriate to the project, however, to identify the unlearned images obtained by actual is insufficient. In this paper, we examine the crater detection using FLDA, and compare with the conventional methods.