Effects of Carbonation on the Microstructure and Macro Physical Properties of Cement Mortar

The objective of this work was to examine the changes in the microstructure and macro physical properties caused by the carbonation of normalised CEM II mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. On the microstructure scale, the evolutions of the cumulative pore volume, pore size distribution, and specific surface area during carbonation were calculated from the adsorption desorption isotherms of nitrogen. We also examined the evolution of macro physical properties such as the porosity accessible to water, the gas permeability, and thermal conductivity. The conflict between the results of nitrogen porosity and water porosity indicated that the porous domains explored using these two techniques are different and help to complementarily evaluate the effects of carbonation. This is a multi-scale study where results on microstructural changes can help to explain the evolution of macro physical properties.




References:
[1] Thierry Mickaël, Modelling of atmospheric carbonation of cement based
materials considering the kinetic effects and modifications of the
microstructure, PhD Thesis, L-école nationale des ponts et chausses,
Paris, 2005.
[2] V.T.Ngala, C.L.Page, Effects of carbonation on pore structure and
diffusional propeties of hydrated cement pastes, Cement and Concrete
Research, Vol. 27, Issue 7, pp. 995-1007, 1997.
[3] Walid Jaafar, Influence de la carbonatation sur la porosité et la
perméabilité des bétons, Dipl├┤me d-études approfondies (Master of
advanced studies), Laboratoire Central des Ponts et Chaussées, Paris,
2003.
[4] N.Hiromitu, H.Masako, Analysis of adsorption isotherms of water
vapour for nonporous and porous adsorbents, Journal of Colloid and
Interface Science, Vol. 145, No. 2, pp. 405-412; September 1991.
[5] V.Baroghel-Bouny, Caractérisation des p├ótes de ciments et de bétons -
Méthodes, analyses et interprétations, Laboratoire Central des Ponts et
Chaussées, Paris, 1994.
[6] Qi Zhang, Guang Ye, Eduard Koenders, Investigation of the structure of
heated Portland cement paste by using various techniques, Construction
and Building Materials 38, pp. 1040-1050, 2013.
[7] S. Brunauer, P. H. Emmett and E. Teller, Journal of American Chemical
Society, 60, pp. 309, 1938.
[8] E.P.Barrett, L.G.Joyner, P.P.Halenda, The determination of pore volume
and area distributions in porous substances. I. Computations from
nitrogen isotherms, Journal of the American Chemical Society, Vol. 73,
pp. 373-380, 1951.
[9] J.J.Kollek, The determination of the permeability of concrete to oxygen
by the CEMBUREAU method-a recommendation, Materials and
Structures 22, pp. 225-230, 1989.
[10] Association française pour la construction et pour la recherche et les
essais sur les matériaux et les constructions (A.F.P.C.-A.F.R.E.M),
Détermination de la masse volumique apparente et de la porosité
accessible ├á l-eau, in : J.P. Ollivier, editor, Durabilité des béton -
Méthodes recommandées pour la mesure des grandeurs associées ├á la
durabilité, Laboratoires des Matériaux et Durabilité des Constructions,
Toulouse, pp. 121-124, 1997.
[11] Association Fran├ºaise de Génie Civil, Conception des bétons pour une
durée de vie donnée des ouvrages, Paris, 2004.
[12] A.M.Neville, Properties of concrete, London: Ed. Longman scientific
and technical, 1990.