Statistical Process Optimization Through Multi-Response Surface Methodology

In recent years, response surface methodology (RSM) has brought many attentions of many quality engineers in different industries. Most of the published literature on robust design methodology is basically concerned with optimization of a single response or quality characteristic which is often most critical to consumers. For most products, however, quality is multidimensional, so it is common to observe multiple responses in an experimental situation. Through this paper interested person will be familiarize with this methodology via surveying of the most cited technical papers. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with more than two responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.

Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P

to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material

Adaptive Multi-Camera Shooting System Based on Dynamic Workflow in a Compact Studio

We developed a multi-camera control system that a (one) cameraman can operate several cameras at a compact studio. we analyzed a workflow of a cameraman of some program shootings with two cameras and clarified their heavy tasks. The system based on a dynamic workflow which adapts a program progressing and recommends of cameraman. we perform the automation of multicamera controls by modeling of studio environment and perform automatic camera adjustment for suitable angle of view with face detection. Our experiment at a real program shooting showed that one cameraman can carry out the task of shooting sufficiently.

Mathematical Modeling of Gas Turbine Blade Cooling

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

An Empirical Analysis of the Influence of Application Experience on Working Methods of Process Modelers

In view of growing competition in the service sector, services are as much in need of modeling, analysis and improvement as business or working processes. Graphical process models are important means to capture process-related know-how for an effective management of the service process. In this contribution, a human performance analysis of process model development paying special attention to model development time and the working method was conducted. It was found that modelers with higher application experience need significantly less time for mental activities than modelers with lower application experience, spend more time on labeling graphical elements, and achieved higher process model quality in terms of activity label quality.

Prediction of the Rear Fuselage Temperature with Radiation Shield

In order to enhance the aircraft survivability, the infrared signatures emitted by hot engine parts should be determined exactly. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer characteristics of an aircraft nozzle is performed and its temperature distribution along each component wall is predicted. The radiation shield is expected to reduce the skin temperature of rear fuselage. The effect of material characteristic of radiation shield on the heat transfer is also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.

SystemC Modeling of Adaptive Least Mean Square Filter

In this paper, we demonstrate the adaptive least-mean-square (LMS) filter modeling using SystemC. SystemC is a modeling language that allows designer to model both hardware and software component and makes it possible to design from high level system of abstraction to low level system of abstraction. We produced five adaptive least-mean-square filter models that are classed as five abstraction levels using SystemC proceeding from the abstract model to the more concrete model.

Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine

An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.

Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Research of Ring MEMS Rate Integrating Gyroscopes

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System

Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESim

Simulation and Workspace Analysis of a Tripod Parallel Manipulator

Industrial robots play a vital role in automation however only little effort are taken for the application of robots in machining work such as Grinding, Cutting, Milling, Drilling, Polishing etc. Robot parallel manipulators have high stiffness, rigidity and accuracy, which cannot be provided by conventional serial robot manipulators. The aim of this paper is to perform the modeling and the workspace analysis of a 3 DOF Parallel Manipulator (3 DOF PM). The 3 DOF PM was modeled and simulated using 'ADAMS'. The concept involved is based on the transformation of motion from a screw joint to a spherical joint through a connecting link. This paper work has been planned to model the Parallel Manipulator (PM) using screw joints for very accurate positioning. A workspace analysis has been done for the determination of work volume of the 3 DOF PM. The position of the spherical joints connected to the moving platform and the circumferential points of the moving platform were considered for finding the workspace. After the simulation, the position of the joints of the moving platform was noted with respect to simulation time and these points were given as input to the 'MATLAB' for getting the work envelope. Then 'AUTOCAD' is used for determining the work volume. The obtained values were compared with analytical approach by using Pappus-Guldinus Theorem. The analysis had been dealt by considering the parameters, link length and radius of the moving platform. From the results it is found that the radius of moving platform is directly proportional to the work volume for a constant link length and the link length is also directly proportional to the work volume, at a constant radius of the moving platform.

Improved Fuzzy Neural Modeling for Underwater Vehicles

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

3DARModeler: a 3D Modeling System in Augmented Reality Environment

This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.

Genetic Algorithms in Hot Steel Rolling for Scale Defect Prediction

Scale defects are common surface defects in hot steel rolling. The modelling of such defects is problematic and their causes are not straightforward. In this study, we investigated genetic algorithms in search for a mathematical solution to scale formation. For this research, a high-dimensional data set from hot steel rolling process was gathered. The synchronisation of the variables as well as the allocation of the measurements made on the steel strip were solved before the modelling phase.

A Stochastic Approach of Mitochondrial Dynamics

Mitochondria are dynamic organelles, capable to interact with each other. While the number of mitochondria in a cell varies, their quality and functionality depends on the operation of fusion, fission, motility and mitophagy. Nowadays, several researches declare as an important factor in neurogenerative diseases the disruptions in the regulation of mitochondrial dynamics. In this paper a stochastic model in BioAmbients calculus is presented, concerning mitochondrial fusion and its distribution in the renewal of mitochondrial population in a cell. This model describes the successive and dependent stages of protein synthesis, protein-s activation and merging of two independent mitochondria.

Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration

This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.

FEA Modeling of Material Removal Rate in Electrical Discharge Machining of Al6063/SiC Composites

Metal matrix composites (MMC) are generating extensive interest in diverse fields like defense, aerospace, electronics and automotive industries. In this present investigation, material removal rate (MRR) modeling has been carried out using an axisymmetric model of Al-SiC composite during electrical discharge machining (EDM). A FEA model of single spark EDM was developed to calculate the temperature distribution.Further, single spark model was extended to simulate the second discharge. For multi-discharge machining material removal was calculated by calculating the number of pulses. Validation of model has been done by comparing the experimental results obtained under the same process parameters with the analytical results. A good agreement was found between the experimental results and the theoretical value.

Formal Modeling and Verification of Software Models

Graph transformation has recently become more and more popular as a general visual modeling language to formally state the dynamic semantics of the designed models. Especially, it is a very natural formalism for languages which basically are graph (e.g. UML). Using this technique, we present a highly understandable yet precise approach to formally model and analyze the behavioral semantics of UML 2.0 Activity diagrams. In our proposal, AGG is used to design Activities, then using our previous approach to model checking graph transformation systems, designers can verify and analyze designed Activity diagrams by checking the interesting properties as combination of graph rules and LTL (Linear Temporal Logic) formulas on the Activities.