Using High Performance Computing for Online Flood Monitoring and Prediction

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of a high performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice River catchment is presented that shows actual durations and their gain from the parallel implementation.

Soil Quality State and Trends in New Zealand’s Largest City after 15 Years

Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009- 2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6 and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.

The Investigation of Enzymatic Activity in the Soils under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia

Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoesterase and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.

A Robust Implementation of a Building Resources Access Rights Management System

A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).

Guidelines for the Management and Sustainability Development of Forest Tourism Kamchanoad Baan Dung, Udon Thani

This study aimed to examine the management and development of forest tourism Kamchanoad. Ban Dung, Udon Thani sustainability. Data were collected by means of qualitative research including in-depth interviews, semi- structured, and then the data were summarized and discussed in accordance with the objectives. And make a presentation in the form of lectures. The target population for the study consisted of 16 people, including representatives from government agencies, community leaders and the community. The results showed that Guidelines for the Management and Development of Forest Tourism Kamchanoad include management of buildings and infrastructure such as roads, water, electricity, toilets. Other developments are the establishment of a service center that provides information and resources to facilitate tourists.; nature trails and informative signage to educate visitors on the path to the jungle Kamchanoad; forest activities for tourists who are interested only in occasional educational activities such as vegetation, etc.; disseminating information on various aspects of tourism through various channels in both Thailand and English, as well as a web site to encourage community involvement in the planning and management of tourism together with the care and preservation of natural resources and preserving the local cultural tourist area of Kamchanoad.

Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review

Most people today are aware that global climate change is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kuala Lumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.

Process Design and Application of Aerobic Hybrid Bioreactor in the Treatment of Municipal Wastewater

Hybrid bioreactor having both suspended-growth and attached-growth bacteria is found a novel and excellent bioreactor system for treating the municipal wastewater containing inhibitory substrates too. In this reactor a fraction of substrate is used by suspended biomass and the remaining by attached biomass resulting in the competition between the two growths for the substrate. The combination of suspended and attached growth provides the system with enhanced biomass concentration and sludge age more than those in ASP. Similar to attached growth system, the hybrid bioreactor ensures considerable efficiency for treating toxic and refractory substances in wastewater. For the process design of hybrid bioreactor a suitable mathematical model is required. Although various mathematical models were developed on hybrid bioreactor in due course of time in earlier research works, none of them was found having a specific simplified solution of the corresponding models and without having any drawback. To overcome this drawback authors already developed a simplified mathematical model for process design of a hybrid bioreactor. The present paper briefly highlights on the various aspects of process design of an aerobic hybrid bioreactor for the treatment of municipal wastewater.

A TFETI Domain Decompositon Solver for Von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening

In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MatLab.

Study of Reporting System for Adverse Events Related to Common Medical Devices at a Tertiary Care Public Sector Hospital in India

Advances in the use of health care technology have resulted in increased adverse events (AEs) related to the use of medical devices. The study focused on the existing reporting systems. This study was conducted in a tertiary care public sector hospital. Devices included Syringe infusion pumps, Cardiac monitors, Pulse oximeters, Ventilators and Defibrillators. A total of 211 respondents were recruited. Interviews were held with 30 key informants. Medical records were scrutinized. Relevant statistical tests were used. Resident doctors reported maximum frequency of AEs, followed by nurses; and least by consultants. A significant association was found between the cadre of health care personnel and awareness that the patients and bystanders have a risk of sustaining AE. Awareness regarding reporting of AEs was low, and it was generally done verbally. Other critical findings are discussed in the light of the barriers to reporting, reasons for non-compliance, recording system, and so on.

The Urban Expansion Characterization of the Bir El Djir Municipality Using Remote Sensing and GIS

Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 1201.5 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.

Video Summarization: Techniques and Applications

Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research.

Probiotic Potential and Antimicrobial Activity of Enterococcus faecium Isolated from Chicken Caecal and Fecal Samples

Enterococci are important inhabitants of the animal intestine and are widely used in probiotic products. A probiotic strain is expected to possess several desirable properties in order to exert beneficial effects. Therefore, the objective of this study was to isolate, characterize and identify Enterococcus sp. from chicken cecal and fecal samples to determine potential probiotic properties. Enterococci were isolated from chicken ceca and feces of thirty three clinically healthy chickens from a local farm. In vitro studies were performed to assess antibacterial activity of the isolated LAB (using agar well diffusion and cell free supernatant broth technique against Salmonella enterica serotype Enteritidis), survival in acidic conditions, resistance to bile salts, and their survival during simulated gastric juice conditions at pH 2.5. Isolates were identified by biochemical carbohydrate fermentation patterns using an API 50 CHL kit and API ZYM kits and by sequenced 16S rDNA. An isolate belonging to E. faecium species exhibited inhibitory effect against S. enteritidis. This isolate producing a clear zone as large as 10.30 mm or greater and was able to grow in the coculture medium and at the same time, inhibited the growth S. enteritidis. In addition, E. faecium exhibited significant resistance under highly acidic conditions at pH 2.5 for 8 h and survived well in bile salt at 0.2% for 24 h and showing ability to survive in the presence of simulated gastric juice at pH 2.5. Based on these results, E. faecium isolate fulfills some of the criteria to be considered as a probiotic strain and therefore, could be used as a feed additive with good potential for controlling S. Enteritidis in chickens. However, in vivo studies are needed to determine the safety of the strain.

Toward Indoor and Outdoor Surveillance Using an Improved Fast Background Subtraction Algorithm

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes invariance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics

This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).

Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven

Carbon Deposits are often occurred inside the industrial coke oven during coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during burn-off process.

Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor

Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast (NHDF) 3T3 proliferation at least under 100 μg/ml. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor.

Do Persistent and Transitory Hybrid Entrepreneurs Differ?

In this study, we compare the profiles of transitory hybrid entrepreneurs and persistent hybrid entrepreneurs to determine how they differ. Hybrid entrepreneurs (HEs) represent a significant share of entrepreneurial activity yet little is known about them. We define HEs as individuals who are active as entrepreneurs but do no support themselves primarily by their enterprise. Persistent HEs (PHEs) are not planning to transition to fulltime entrepreneurship whereas transitory HEs (THEs) consider it probable. Our results show that THEs and PHEs are quite similar in background. THEs are more interested in increasing their turnover than PHEs, as expected, but also emphasize self-fulfillment as a motive for entrepreneurship more than PHEs. The clearest differences between THEs and PHEs are found in their views on how well their immediate circle supports full-time entrepreneurship, and their views of their own entrepreneurial abilities and the market potential of their firm. Our results support earlier arguments that hybrids should be considered separately in research on entrepreneurial entry and self-employment.

A Literature Assessment of Multi-Level Inverters

Multi-Level Inverter technology has been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of lower rating can be used thereby enabling the schemes to be used for high voltage applications. Reduced Total Harmonic Distortion (THD).Since the dv/dt is low; the Electromagnetic Interference from the scheme is low. To avoid the switching losses Lower switching frequencies can be used. In this paper present a survey of various topologies, control strategy and modulation techniques used by these inverters. Here the regenerative and superior topologies are also discussed.