Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

On the Dynamic Behaviour of a Four-Bar Linkage Driven by a Velocity Controlled DC Motor

The dynamic behaviour of a four-bar linkage driven by a velocity controlled DC motor is discussed in the paper. In particular the author presents the results obtained by means of a specifically developed software, which implements the mathematical models of all components of the system (linkage, transmission, electric motor, control devices). The use of this software enables a more efficient design approach, since it allows the designer to check, in a simple and immediate way, the dynamic behaviour of the mechanism, arising from different values of the system parameters.

An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem

The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Bandwidth Allocation for ABR Service in Cellular Networks

Available Bit Rate Service (ABR) is the lower priority service and the better service for the transmission of data. On wireline ATM networks ABR source is always getting the feedback from switches about increase or decrease of bandwidth according to the changing network conditions and minimum bandwidth is guaranteed. In wireless networks guaranteeing the minimum bandwidth is really a challenging task as the source is always in mobile and traveling from one cell to another cell. Re establishment of virtual circuits from start to end every time causes the delay in transmission. In our proposed solution we proposed the mechanism to provide more available bandwidth to the ABR source by re-usage of part of old Virtual Channels and establishing the new ones. We want the ABR source to transmit the data continuously (non-stop) inorderto avoid the delay. In worst case scenario at least minimum bandwidth is to be allocated. In order to keep the data flow continuously, priority is given to the handoff ABR call against new ABR call.

Learning Style and Learner Satisfaction in a Course Delivery Context

This paper describes the results and implications of a correlational study of learning styles and learner satisfaction. The relationship of these empirical concepts was examined in the context of traditional versus e-blended modes of course delivery in an introductory graduate research course. Significant results indicated that the visual side of the visual-verbal dimension of students- learning style(s) was positively correlated to satisfaction with themselves as learners in an e-blended course delivery mode and negatively correlated to satisfaction with the classroom environment in the context of a traditional classroom course delivery mode.

Modified Fast and Exact Algorithm for Fast Haar Transform

Wavelet transform or wavelet analysis is a recently developed mathematical tool in applied mathematics. In numerical analysis, wavelets also serve as a Galerkin basis to solve partial differential equations. Haar transform or Haar wavelet transform has been used as a simplest and earliest example for orthonormal wavelet transform. Since its popularity in wavelet analysis, there are several definitions and various generalizations or algorithms for calculating Haar transform. Fast Haar transform, FHT, is one of the algorithms which can reduce the tedious calculation works in Haar transform. In this paper, we present a modified fast and exact algorithm for FHT, namely Modified Fast Haar Transform, MFHT. The algorithm or procedure proposed allows certain calculation in the process decomposition be ignored without affecting the results.

Algerian Irrigation in Transition; Effects on Irrigation Profitability in Irrigation Schemes: The Case of the East Mitidja Scheme

In Algeria, liberalization reforms undertaken since the 1990s have resulted in negative effects on the development and management of irrigation schemes, as well as on the conditions of farmers. Reforms have been undertaken to improve the performance of irrigation schemes, such as the national plan of agricultural development (PNDA) in 2000 and the water pricing policy of 2005. However, after implementation of these policies, questions have arisen with regard to irrigation performance and its suitability for agricultural development. Hence, the aim of this paper is to provide insight into the profitability of irrigation during the transition period under current irrigation agricultural policies in Algeria. By using the method of farm crop budget analysis in the East Mitidja irrigation scheme, the returns from using surface water resources based on farm typology were found to vary among crops and farmers- groups within the scheme. Irrigation under the current situation is profitable for all farmers, including both those who benefit from subsidies and those who do not. However, the returns to water were found to be very sensitive to crop price fluctuations, particularly for non-subsidized groups and less so for those whose farming is based on orchards. Moreover, the socio-economic environment of the farmers contributed to less significant impacts of the PNDA policy. In fact, the limiting factor is not only the water, but also the lack of land ownership title. Market access constraints led to less agricultural investment and therefore to low intensification and low water productivity. It is financially feasible to recover the annual O&M costs in the irrigation scheme. By comparing the irrigation water price, returns to water, and O&M costs of water delivery, it is clear that irrigation can be profitable in the future. However, water productivity must be improved by enhancing farmers- income through farming investment, improving assets access, and the allocation of activities and crops which bring high returns to water; this could allow the farmers to pay more for water and allow cost recovery for water systems.

On the use of Ionic Liquids for CO2 Capturing

In this work, ionic liquids (ILs) for CO2 capturing in typical absorption/stripper process are considered. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model is developed for the process based on Peng-Robinson (PR) equation of state (EoS) which is validated with experimental data for various solutions involving CO2. The model is utilized to study the sorbent and energy demand for three types of ILs at specific CO2 capturing rates. The energy demand is manifested by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the used solvent in the regeneration step. It is found that higher recovery temperature is required for solvents with higher solubility coefficient. For all ILs, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.

Securing Message in Wireless Sensor Network by using New Method of Code Conversions

Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.

An Experimental Design Approach to Determine Effects of The Operating Parameters on The Rate of Ru promoted Ir Carbonylation of Methanol

carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R2 values greater than 0.9; confirmeda satisfactory fitness of the experimental and theoretical studies. In other words, the developed model and experimental data obtained passed all diagnostic tests establishing this model as a statistically significant.

Laplace Decomposition Approximation Solution for a System of Multi-Pantograph Equations

In this work we adopt a combination of Laplace transform and the decomposition method to find numerical solutions of a system of multi-pantograph equations. The procedure leads to a rapid convergence of the series to the exact solution after computing a few terms. The effectiveness of the method is demonstrated in some examples by obtaining the exact solution and in others by computing the absolute error which decreases as the number of terms of the series increases.

A Technique for Execution of Written Values on Shared Variables

The current paper conceptualizes the technique of release consistency indispensable with the concept of synchronization that is user-defined. Programming model concreted with object and class is illustrated and demonstrated. The essence of the paper is phases, events and parallel computing execution .The technique by which the values are visible on shared variables is implemented. The second part of the paper consist of user defined high level synchronization primitives implementation and system architecture with memory protocols. There is a proposition of techniques which are core in deciding the validating and invalidating a stall page .

Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct

This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.

Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs

There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.

Lessons Learned from Observing User Behavior through Repeated Usability Evaluations

Academic research information service is a must for surveying previous studies in research and development process. OntoFrame is an academic research information service under Semantic Web framework different from simple keyword-based services such as CiteSeer and Google Scholar. The first purpose of this study is for revealing user behavior in their surveys, the objects of using academic research information services, and their needs. The second is for applying lessons learned from the results to OntoFrame.

Survivability of Verhulst-free Populations under Mutation Accumulation

Stable nonzero populations without random deaths caused by the Verhulst factor (Verhulst-free) are a rarity. Majority either grow without bounds or die of excessive harmful mutations. To delay the accumulation of bad genes or diseases, a new environmental parameter Γ is introduced in the simulation. Current results demonstrate that stability may be achieved by setting Γ = 0.1. These steady states approach a maximum size that scales inversely with reproduction age.

An Efficient Mobile Payment System Based On NFC Technology

The work we have accomplished in implementing a Mobile Payment mechanism that enables customers to pay bills for groceries and other purchased items in a store through the means of a mobile phone, specifically a Smartphone. The mode of transaction, as far as communication between the customer-s handset and the merchant-s POS is concerned, we have decided upon NFC (Near Field Communication). This is due to the fact that for the most part, Pakistani Smartphone users have handsets that have Android mobile OS, which supports the aforementioned platform, IOS, on the other hand does not.

Cost and Productivity Experiences of Pakistan with Aggregate Learning Curve

The principal focus of this study is on the measurement and analysis of labor learnings in Pakistan. The study at the aggregate economy level focus on the labor productivity movements and at large-scale manufacturing level focus on the cost structure, with isolating the contribution of the learning curve. The analysis of S-shaped curve suggests that learnings are only below one half of aggregate learning curve and other half shows the retardation in learning, hence retardation in productivity movements. The study implies the existence of learning economies in term of cost reduction that is input cost per unit produced decreases by 0.51 percent every time the cumulative production output doubles.

Conversion of Methanol to Propylene over a High Silica B-HZSM-5 Catalyst

Hydrothermally synthesized high silica borosilicates with the MFI structure was subjected to several characterization techniques. The effect of boron on the structure and acidity of HZSM-5 catalyst were studied by XRD, SEM, N2 adsorption, solid state NMR, NH3-TPD. It was confirmed that boron had entered the framework in the boron samples. The results also revealed that strong acidity was weakened and weak acidity was strengthened by the boron added zeolite framework compared with parent catalyst. The catalytic performance was carried out in a fixed bed at 460°C for methanol to propylene (MTP) reaction. The results of MTP reaction showed a great increment of the propylene selectivity and excellent stability for the B-HZSM-5. The catalyst exhibited about 81% selectivity to C2 = - C4 = olefins with 40% selectivity of propylene as major component at near 100% methanol conversion, and the stable performance in the studied period was 100h.

Extended Deductive Databases with Uncertain Information

The paper presents an approach for handling uncertain information in deductive databases using multivalued logics. Uncertainty means that database facts may be assigned logical values other than the conventional ones - true and false. The logical values represent various degrees of truth, which may be combined and propagated by applying the database rules. A corresponding multivalued database semantics is defined. We show that it extends successful conventional semantics as the well-founded semantics, and has a polynomial time data complexity.