The Impact of Parent Involvement in Preschool Disabled Children

The purpose of this study was to investigate the relationship between parent involvement and preschool disabled children’s development. Parents of 3 year old disabled children (N=440) and 5 year old disabled children (N=937) participating in the Special Needs Education Longitudinal Study were interviewed or answered the web design questionnaire about their actions in parenting their disabled children. These children’s developments were also evaluated by their teachers. Data were analyzed using Structural Equation Modeling. Results were showed by tables and figures. Based on the results, the researcher made some suggestions for future studies.

Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Phenolic Compounds in Red Fruits Produced in Organic Farming at Maturation Stage

The agricultural organic farming is different from conventional farming in a way that is aimed at providing a balanced and constructive action in agricultural systems. With the increase in intensive agriculture, undesirable changes were being observed in ecosystems with irreparable damage being caused to the natural equilibrium. This is the reason for the increasing interest in organic farming as an environment friendly agricultural production method. In the present work three red fruits produced in organic farming were analyzed, namely raspberry, gooseberry and blueberry. The samples were harvested in a local farm when at plain maturation. The results obtained allowed to conclude that the blueberry contained higher amounts of phenolic compounds, total tannins and total anthocyanins than raspberry and gooseberry. Furthermore, the HPLC analysis allowed to identify monomeric anthocyanins and phenolic acids in the three fruits studied.

Maya Semantic Technique: A Mathematical Technique Used to Determine Partial Semantics for Declarative Sentences

This research uses computational linguistics, an area of study that employs a computer to process natural language, and aims at discerning the patterns that exist in declarative sentences used in technical texts. The approach is mathematical, and the focus is on instructional texts found on web pages. The technique developed by the author and named the MAYA Semantic Technique is used here and organized into four stages. In the first stage, the parts of speech in each sentence are identified. In the second stage, the subject of the sentence is determined. In the third stage, MAYA performs a frequency analysis on the remaining words to determine the verb and its object. In the fourth stage, MAYA does statistical analysis to determine the content of the web page. The advantage of the MAYA Semantic Technique lies in its use of mathematical principles to represent grammatical operations which assist processing and accuracy if performed on unambiguous text. The MAYA Semantic Technique is part of a proposed architecture for an entire web-based intelligent tutoring system. On a sample set of sentences, partial semantics derived using the MAYA Semantic Technique were approximately 80% accurate. The system currently processes technical text in one domain, namely Cµ programming. In this domain all the keywords and programming concepts are known and understood.

An Optimal Algorithm for HTML Page Building Process

Demand over web services is in growing with increases number of Web users. Web service is applied by Web application. Web application size is affected by its user-s requirements and interests. Differential in requirements and interests lead to growing of Web application size. The efficient way to save store spaces for more data and information is achieved by implementing algorithms to compress the contents of Web application documents. This paper introduces an algorithm to reduce Web application size based on reduction of the contents of HTML files. It removes unimportant contents regardless of the HTML file size. The removing is not ignored any character that is predicted in the HTML building process.

Hydrolysis Characteristics of Polycrystalline Lithium Hydride Powders and Sintered Bulk

Ambient hydrolysis products in moist air and hydrolysis kinetics in argon with humidity of RH1.5% for polycrystalline LiH powders and sintered bulks were investigated by X-ray diffraction, Raman spectroscopy and gravimetry. The results showed that the hydrolysis products made up a layered structure of LiOH•H2O/LiOH/Li2O from surface of the sample to inside. In low humid argon atmosphere, the primary hydrolysis product was Li2O rather than LiOH. The hydrolysis kinetic curves of LiH bulks present a paralinear shape, which could be explained by the “Layer Diffusion Control" model. While a three-stage hydrolysis kinetic profile was observed for LiH powders under the same experimental conditions. The first two sections were similar to that of the bulk samples, and the third section also presents a linear reaction kinetics but with a smaller reaction rate compared to the second section because of a larger exothermic effect for the hydrolysis reaction of LiH powder.

Image Processing Using Color and Object Information for Wireless Capsule Endoscopy

Wireless capsule endoscopy provides real-time images in the digestive tract. Capsule images are usually low resolution and are diverse images due to travel through various regions of human body. Color information has been a primary reference in predicting abnormalities such as bleeding. Often color is not sufficient for this purpose. In this study, we took morphological shapes into account as additional, but important criterion. First, we processed gastric images in order to indentify various objects in the image. Then, we analyzed color information in the object. In this way, we could remove unnecessary information and increase the accuracy. Compared to our previous investigations, we could handle images of various degrees of brightness and improve our diagnostic algorithm.

Selective Forwarding Attack and Its Detection Algorithms: A Review

The wireless mesh networks (WMNs) are emerging technology in wireless networking as they can serve large scale high speed internet access. Due to its wireless multi-hop feature, wireless mesh network is prone to suffer from many attacks, such as denial of service attack (DoS). We consider a special case of DoS attack which is selective forwarding attack (a.k.a. gray hole attack). In such attack, a misbehaving mesh router selectively drops the packets it receives rom its predecessor mesh router. It is very hard to detect that packet loss is due to medium access collision, bad channel quality or because of selective forwarding attack. In this paper, we present a review of detection algorithms of selective forwarding attack and discuss their advantage & disadvantage. Finally we conclude this paper with open research issues and challenges.

MIMO Broadcast Scheduling for Weighted Sum-rate Maximization

Multiple-Input-Multiple-Output (MIMO) is one of the most important communication techniques that allow wireless systems to achieve higher data rate. To overcome the practical difficulties in implementing Dirty Paper Coding (DPC), various suboptimal MIMO Broadcast (MIMO-BC) scheduling algorithms are employed which choose the best set of users among all the users. In this paper we discuss such a sub-optimal MIMO-BC scheduling algorithm which employs antenna selection at the receiver side. The channels for the users considered here are not Identical and Independent Distributed (IID) so that users at the receiver side do not get equal opportunity for communication. So we introduce a method of applying weights to channels of the users which are not IID in such a way that each of the users gets equal opportunity for communication. The effect of weights on overall sum-rate achieved by the system has been investigated and presented.

Relative Mapping Errors of Linear Time Invariant Systems Caused By Particle Swarm Optimized Reduced Order Model

The authors present an optimization algorithm for order reduction and its application for the determination of the relative mapping errors of linear time invariant dynamic systems by the simplified models. These relative mapping errors are expressed by means of the relative integral square error criterion, which are determined for both unit step and impulse inputs. The reduction algorithm is based on minimization of the integral square error by particle swarm optimization technique pertaining to a unit step input. The algorithm is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing methods.

Automatic Vehicle Location Systems

In this article, a single application is suggested to determine the position of vehicles using Geographical Information Systems (GIS) and Geographical Position Systems (GPS). The part of the article material included mapping three dimensional coordinates to two dimensional coordinates using UTM or LAMBERT geographical methods, and the algorithm of conversion of GPS information into GIS maps is studied. Also, suggestions are given in order to implement this system based on web (called web based systems). To apply this system in IRAN, related official in this case are introduced and their duties are explained. Finally, economy analyzed is assisted according to IRAN communicational system.

Face Authentication for Access Control based on SVM using Class Characteristics

Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.

Knowledge Impact on Measurement: A Conceptual Metric for Evaluating Performance Improvement (PI) at the Kuwait Institute for Scientific Research (KISR)

Research and development R&D work involves enormous amount of work that has to do with data measurement and collection. This process evolves as new information is fed, new technologies are utilized, and eventually new knowledge is created by the stakeholders i.e., researchers, clients, and end-users. When new knowledge is created, procedures of R&D work should evolve and produce better results within improved research skills and improved methods of data measurements and collection. This measurement improvement should then be benchmarked against a metric that should be developed at the organization. In this paper, we are suggesting a conceptual metric for R&D work performance improvement (PI) at the Kuwait Institute for Scientific Research (KISR). This PI is to be measured against a set of variables in the suggested metric, which are more closely correlated to organizational output, as opposed to organizational norms. The paper also mentions and discusses knowledge creation and management as an addedvalue to R&D work and measurement improvement. The research methodology followed in this work is qualitative in nature, based on a survey that was distributed to researchers and interviews held with senior researchers at KISR. Research and analyses in this paper also include looking at and analyzing KISR-s literature.

Reliability Modeling and Data Analysis of Vacuum Circuit Breaker Subject to Random Shocks

The electrical substation components are often subject to degradation due to over-voltage or over-current, caused by a short circuit or a lightning. A particular interest is given to the circuit breaker, regarding the importance of its function and its dangerous failure. This component degrades gradually due to the use, and it is also subject to the shock process resulted from the stress of isolating the fault when a short circuit occurs in the system. In this paper, based on failure mechanisms developments, the wear out of the circuit breaker contacts is modeled. The aim of this work is to evaluate its reliability and consequently its residual lifetime. The shock process is based on two random variables such as: the arrival of shocks and their magnitudes. The arrival of shocks was modeled using homogeneous Poisson process (HPP). By simulation, the dates of short-circuit arrivals were generated accompanied with their magnitudes. The same principle of simulation is applied to the amount of cumulative wear out contacts. The objective reached is to find the formulation of the wear function depending on the number of solicitations of the circuit breaker.

New Technologies for Modeling of Gas Turbine Cooled Blades

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Orthogonal Array Application and Response Surface Method Approach for Optimal Product Values: An Application for Oil Blending Process

This paper presents a methodical approach for designing and optimizing process parameters in oil blending industries. Twenty seven replicated experiments were conducted for production of A-Z crown super oil (SAE20W/50) employing L9 orthogonal array to establish process response parameters. Power law model was fitted to experimental data and the obtained model was optimized applying the central composite design (CCD) of response surface methodology (RSM). Quadratic model was found to be significant for production of A-Z crown supper oil. The study recognized and specified four new lubricant formulations that conform to ISO oil standard in the course of analyzing the batch productions of A-Z crown supper oil as: L1: KV = 21.8293Cst, BS200 = 9430.00Litres, Ad102=11024.00Litres, PVI = 2520 Litres, L2: KV = 22.513Cst, BS200 = 12430.00 Litres, Ad102 = 11024.00 Litres, PVI = 2520 Litres, L3: KV = 22.1671Cst, BS200 = 9430.00 Litres, Ad102 = 10481.00 Litres, PVI= 2520 Litres, L4: KV = 22.8605Cst, BS200 = 12430.00 Litres, Ad102 = 10481.00 Litres, PVI = 2520 Litres. The analysis of variance showed that quadratic model is significant for kinematic viscosity production while the R-sq value statistic of 0.99936 showed that the variation of kinematic viscosity is due to its relationship with the control factors. This study therefore resulted to appropriate blending proportions of lubricants base oil and additives and recommends the optimal kinematic viscosity of A-Z crown super oil (SAE20W/50) to be 22.86Cst.

The effect of Gamma Irradiation on the Nutritional Properties of Functional Products of the Green Banana

Banana is one of the most consumed fruits in the tropics and subtropics. Brazil accounts for about 9% of the world banana production. However, the production losses are as high as 30 to 40% and even much higher in some developing countries. The green banana flour is a complex carbohydrate source, including a high total starch (73.4%), resistant starch (17.5%) with functional properties. Gamma irradiation is considered to be an alternative method for food preservation. It has been performed due to the need of extending the shelf - life of foods, whilst maintaining their safety and avoiding one of the main concerns: the nutrient loss. In this work data about on the effects of ionizing radiation on the physicochemical analysis (carbohydrate, proteins, lipids, alimentary fiber, moistures and ashes) of Brazilian functional products (biscuits and bread) of the green banana pulp are presented. The caloric value was calculated. No significant difference was observed between the samples of irradiated and non – irradiated green banana biscuits with the following determinations: carbohydrates, proteins, alimentary fiber and ashes. Only a small significant difference was found in lipids (macronutrients). The results of physical chemical analysis of the irradiated and non- irradiated green banana bread non- irradiated showed no significant difference with the following determinations: carbohydrates, lipids (macronutrients), moisture, ashes and caloric value. A small difference was found in proteins (macronutrients). Irradiation of functional products (biscuits and bread) with doses of 1 and 3kGy maintained their original macronutrients content, showing good radioresistance.

Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Study of Reactive Wetting of Sn–0.7Cu and Sn–0.3Ag–0.7Cu Lead Free Solders during Solidification on Nickel Coated Al Substrates

Microstructure, wetting behavior and interfacial reactions between Sn–0.7Cu and Sn–0.3Ag–0.7Cu (SAC0307) solders solidified on Ni coated Al substrates were compared and investigated. Microstructure of Sn–0.7Cu alloy exhibited a eutectic matrix composed of primary β-Sn dendrites with a fine dispersion of Cu6Sn5 intermetallics whereas microstructure of SAC0307 alloy exhibited coarser Cu6Sn5 and finer Ag3Sn precipitates of IMCs with decreased tin dendrites. Contact angles ranging from 22° to 26° were obtained for Sn–0.7Cu solder solidified on substrate surface whereas for SAC0307 solder alloy contact angles were found to be in the range of 20° to 22°. Sn–0.7Cu solder/substrate interfacial region exhibited faceted (Cu, Ni)6Sn5 IMCs protruding into the solder matrix and a small amount of (Cu, Ni)3Sn4 intermetallics at the interface. SAC0307 solder/substrate interfacial region showed mainly (Cu, Ni)3Sn4 intermetallics adjacent to the coating layer and (Cu, Ni)6Sn5 IMCs in the solder matrix. The improvement in the wettability of SAC0307 solder alloy on substrate surface is attributed to the formation of cylindrical shape (Cu,Ni)6Sn5 and a layer of (Cu, Ni)3Sn4 IMCs at the interface.

Performance Evaluation of 2×2 Switched Beam Antennas with Null Locating for Wireless Mesh Networks

A concept of switched beam antennas consisting of 2×2 rectangular array spaced by λ/4 accompanied with a null locating has been proposed in the previous work. In this letter, the performance evaluations of its prototype are presented. The benefits of using proposed system have been clearly measured in term of signal quality, throughput and delays. Also, the impact of position shift which mesh router is not located on the expected beam direction has also been investigated.