Capability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipabarbata Desf) Under Different Treatments of Vegetation Management (Saveh, Iran)

The rangelands, as one of the largest dynamic biomes in the world, have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere, particularly carbon dioxide as the main these gases, is one of these cases. The attention to rangeland, as cheep and reachable resources to sequestrate the carbon dioxide, increases after the Industrial Revolution. Rangelands comprise the large parts of Iran as a steppic area. Rudshur (Saveh), as area index of steppic area, was selected under three sites include long-term exclosure, medium-term exclosure, and grazable area in order to the capable of carbon dioxide’s sequestration of dominated species. Canopy cover’s percentage of two dominated species (Artemisia sieberi Besser & Stipa barbata Desf) was determined via establishing of random 1 square meter plot. The sampling of above and below ground biomass style was obtained by complete random. After determination of ash percentage in the laboratory; conversion ratio of plant biomass to organic carbon was calculated by ignition method. Results of the paired t-test showed that the amount of carbon sequestration in above ground and underground biomass of Artemisia sieberi Besser & Stipa barbata Desf is different in three regions. It, of course, hasn’t any difference between under and surface ground’s biomass of Artemisia sieberi Besser in long-term exclosure. The independent t-test results indicate differences between underground biomass corresponding each other in the studied sites. Carbon sequestration in the Stipa barbata Desf was totally more than Artemisia sieberi Besser. Altogether, the average sequestration of the long-term exclosure was 5.842gr/m², the medium-term exclosure was 4.115gr/m², and grazable area was 5.975gr/m² so that there isn’t valuable statistical difference in term of total amount of carbon sequestration to three sites.

Fluidity of A713 Cast Alloy with and without Scrap Addition using Double Spiral Fluidity Test: A Comparison

Recycling of aluminum alloys often decrease fluidity, consequently influence the castability of the alloy. In this study, the fluidity of Al-Zn alloys, such as the standard A713 alloy with and without scrap addition has been investigated. The scrap added was comprised of contaminated alloy turning chips. Fluidity measurements were performed with double spiral fluidity test consisting of gravity casting of double spirals in green sand moulds with good reproducibility. The influence of recycled alloy on fluidity has been compared with that of the virgin alloy and the results showed that the fluidity decreased with the increase in recycled alloy at minimum pouring temperatures. Interestingly, an appreciable improvement in the fluidity was observed at maximum pouring temperature, especially for coated spirals.

The Effect of Simulated Acid Rain on Glycine max

Acid rain occurs when sulphur dioxide (SO2) and nitrogen oxides (Nox) gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds. The result is a mild solution of sulfuric acid and nitric acid. Soil has a greater buffering capacity than aquatic systems. However excessive amount of acids introduced by acid rains may disturb the entire soil chemistry. Acidity and harmful action of toxic elements damage vegetation while susceptible microbial species are eliminated. In present study, the effects of simulated sulphuric acid and nitric acid rains were investigated on crop Glycine max. The effect of acid rain on change in soil fertility was detected in which pH of control sample was 6.5 and pH of 1%H2SO4 and 1%HNO3 were 3.5. Nitrogen nitrate in soil was high in 1% HNO3 treated soil & Control sample. Ammonium nitrogen in soil was low in 1% HNO3 & H2SO4 treated soil. Ammonium nitrogen was medium in control and other samples. The effect of acid rain on seed germination on 3rd day of germination control sample growth was 7 cm, 0.1% HNO3 was 8cm, and 0.001% HNO3 & 0.001% H2SO4 was 6cm each. On 10th day fungal growth was observed in 1% and 0.1%H2SO4 concentrations, when all plants were dead. The effect of acid rain on crop productivity was investigated on 3rd day roots were developed in plants. On12th day Glycine max showed more growth in 0.1% HNO3, 0.001% HNO3 and 0.001% H2SO4 treated plants growth were same as compare to control plants. On 20th day development of discoloration of plant pigments were observed on acid treated plants leaves. On 38th day, 0.1, 0.001% HNO3 and 0.1, 0.001% H2SO4 treated plants and control plants were showing flower growth. On 42th day, acid treated Glycine max variety and control plants were showed seeds on plants. In Glycine max variety 0.1, 0.001% H2SO4, 0.1, 0.001% HNO3 treated plants were dead on 46th day and fungal growth was observed. The toxicological study was carried out on Glycine max plants exposed to 1% HNO3 cells were damaged more than 1% H2SO4. Leaf sections exposed to 0.001% HNO3 & H2SO4 showed less damaged of cells and pigmentation observed in entire slide when compare with control plant. The soil analysis was done to find microorganisms in HNO3 & H2SO4 treated Glycine max and control plants. No microorganism growth was observed in 1% HNO3 & H2SO4 but control plant showed microbial growth.

Recent Outbreaks of Highly Pathogenic Avian Influenza Virus in Chickens and Ducks in Egypt: Pathological Study

Clinically, chickens showed progressively developed clinical signs represented by sever cyanosis of the comb and wattles with hemorrhage at the shanks, depression, and ruffling feathers with loss of appetite and high daily mortalities. The ducks showed severe neurological signs as torticollus, seizures and inability to stand with mild signs of diarrhea and depression. Grossly, chickens showed hemorrhages and congestion in most of the organs particularly lung, liver, spleen, trachea and kidney. The examined ducks showed multiple petechial hemorrhages, multifocal hemorrhagic necrosis in the pancreas, pulmonary edema, congestion and hemorrhage in meninges and congestion in the skeletal muscles. Histopathology revealed severe congestion and hemorrhages in most of the organs particularly lung, liver and kidney. Microscopic erosive tracheitis, sever pulmonary congestion and perivascular oedema and lymphogranulocytic pneumonia were constant. The liver showed hepatocyts necrosis and lympho-granulocytic infiltration. The kidney showed renal tubular necrosis and diffuse congestion. Multifocal, neuronal necrosis, hemorrhages, multifocal glial nodules, lympho- histiocytic perivascular cuffing, and occasional neuronophagia were observed in the cerebrum. Other organs showed moderate changes.

Removal of a Reactive Dye by Adsorption Utilizing Waste Aluminium Hydroxide Sludge as an Adsorbent

Removal of a reactive dye (Reactive blue 4) by adsorption utilizing waste aluminium hydroxide sludge as an adsorbent was investigated. The removal of the dye was optimized using response surface methodology (RSM). In the RSM experiments; initial dye concentration, adsorbent concentration and contact time were critical parameters. RSM experiments were performed at the range of initial dye concentration 31.82-368.18 mg/L, adsorbent concentration 3.18-36.82 g/L, contact time 15.82- 56.18 h. Optimum initial dye concentration, adsorbent concentration and contact time were obtained as 108.83 mg/L, 29.36 g/L and 33.57 h respectively. At these conditions, maximum removal of the dye was obtained as 95%. The experiments were performed at the optimum conditions to verify these results and the same results were obtained.

Social Media and Tacit Knowledge Sharing: Developing a Conceptual Model

With the advent of social web initiatives, some argued that these new emerging tools might be useful in tacit knowledge sharing through providing interactive and collaborative technologies. However, there is still a poverty of literature to understand how and what might be the contributions of social media in facilitating tacit knowledge sharing. Therefore, this paper is intended to theoretically investigate and map social media concepts and characteristics with tacit knowledge creation and sharing requirements. By conducting a systematic literature review, five major requirements found that need to be present in an environment that involves tacit knowledge sharing. These requirements have been analyzed against social media concepts and characteristics to see how they map together. The results showed that social media have abilities to comply some of the main requirements of tacit knowledge sharing. The relationships have been illustrated in a conceptual framework, suggesting further empirical studies to acknowledge findings of this study.

Effects of Chitosan as the Growth Stimulator for Grammatophyllum speciosum in Vitro Culture

The effects of chitosan, a biodegradable polymer, were studied in Grammatophyllum speciosum protocorm-like bodies (PLBs) in vitro culture. The chitosan concentration of 0, 5, 10, 15, 20, 25, 50 or 100 mg/l were supplemented in half-strength Murashige and Skoog (1/2 MS) liquid or on agar media containing 2% (w/v) sucrose. The results showed that liquid medium supplemented with 15 mg/l chitosan showed the highest relative growth rate (7-fold increase) of PLBs. On 1/2 MS agar medium supplemented with 25 mg/l chitosan gave the highest relative growth rate (4-fold increase). The relative growth rate of G. speciosum PLBs on agar medium was significantly lower than that in liquid medium. Moreover, chitosan, supplemented to agar medium promoted shoot formation but not rooting. However, supplementation at too high a level, such as 100 mg/l can inhibit growth and kill PLBs.

A Normalization-based Robust Watermarking Scheme Using Zernike Moments

Digital watermarking has become an important technique for copyright protection but its robustness against attacks remains a major problem. In this paper, we propose a normalizationbased robust image watermarking scheme. In the proposed scheme, original host image is first normalized to a standard form. Zernike transform is then applied to the normalized image to calculate Zernike moments. Dither modulation is adopted to quantize the magnitudes of Zernike moments according to the watermark bit stream. The watermark extracting method is a blind method. Security analysis and false alarm analysis are then performed. The quality degradation of watermarked image caused by the embedded watermark is visually transparent. Experimental results show that the proposed scheme has very high robustness against various image processing operations and geometric attacks.

Analysis of the Effect of 1980 Transformation on the Foreign Trade of Turkey with Chow Test

While import-substituting industrialization policy constitute the basis for the industrialization strategies of the 1960s and 1970s in Turkey, this policy was no longer sustainable by the 1980s. For this reason, export-oriented industrialization policy was adopted with the decisions taken on January 24, 1980. In other words, the post-1980 period, Turkey's economy has adopted outwardoriented industrialization strategy. In this study, it is aimed to analyze the effect of the change in economic structure on foreign trade with the transformation of foreign trade and industrialization policies in the post-1980 period. In this respect, in order to analyze the relationship between import, export and economic growth by using variables of the 1960-2011 period, Chow test was applied. In the analysis the reason for using Chow test is whether there is any difference in economic terms between import-substituting industrialization policy applied in the 1960-1980 period and the 1981-2011 period during which exportoriented industrialization policy was applied as a result of the structural transformation.

Simulation and Realization of a Battery Charge Regulator

We present a simulation and realization of a battery charge regulator (BCR) in microsatellite earth observation. The tests were performed on battery pack 12volt, capacity 24Ah and the solar array open circuit voltage of 100 volt and optimum power of about 250 watt. The battery charge is made by solar module. The principle is to adapt the output voltage of the solar module to the battery by using the technique of pulse width modulation (PWM). Among the different techniques of charge battery, we opted for the technique of the controller ON/OFF is a standard technique and simple, it-s easy to be board executed validation will be made by simulation "Proteus Isis Professional software ". The circuit and the program of this prototype are based on the PIC16F877 microcontroller, a serial interface connecting a PC is also realized, to view and save data and graphics in real time, for visualization of data and graphs we develop an interface tool “visual basic.net (VB)--.

Design and Analysis of a Solar Refrigeration System with a Rotating Generator

A solar refrigeration system based on the adsorptiondesorption phenomena is designed and analyzed. An annular tubular generator filled with silica gel adsorbent and with a perforated inner cylinder is integrated within a flat solar collector. The working fluid in the refrigeration cycle is water. The thermodynamic analysis and because of the temperature level that could be attained with a flat solar collector it is required that the system operates under vacuum conditions. In order to enhance the performance of the system and to get uniform temperature in the silica gel and higher desorbed mass, an apparatus for rotation of the generator is incorporated in the system. Testing is carried out and measurements are taken on the designed installation. The effect of rotation is checked on the temperature distribution and on the performance of this machine and compared to the flat solar collector with fixed generator.

Fuzzy Logic Controlled Shunt Active Power Filter for Three-phase Four-wire Systems with Balanced and Unbalanced Loads

This paper presents a fuzzy logic controlled shunt active power filter used to compensate for harmonic distortion in three-phase four-wire systems. The shunt active filter employs a simple method for the calculation of the reference compensation current based of Fast Fourier Transform. This presented filter is able to operate in both balanced and unbalanced load conditions. A fuzzy logic based current controller strategy is used to regulate the filter current and hence ensure harmonic free supply current. The validity of the presented approach in harmonic mitigation is verified via simulation results of the proposed test system under different loading conditions.

Power Generation Potential of Dynamic Architecture

The main aim of this work is to establish the capabilities of new green buildings to ascertain off-grid electricity generation based on the integration of wind turbines in the conceptual model of a rotating tower [2] in Dubai. An in depth performance analysis of the WinWind 3.0MW [3] wind turbine is performed. Data based on the Dubai Meteorological Services is collected and analyzed in conjunction with the performance analysis of this wind turbine. The mathematical model is compared with Computational Fluid Dynamics (CFD) results based on a conceptual rotating tower design model. The comparison results are further validated and verified for accuracy by conducting experiments on a scaled prototype of the tower design. The study concluded that integrating wind turbines inside a rotating tower can generate enough electricity to meet the required power consumption of the building, which equates to a wind farm containing 9 horizontal axis wind turbines located at an approximate area of 3,237,485 m2 [14].

Application of Robot Formation Scheme for Screening Solar Energy in a Greenhouse

Many agricultural and especially greenhouse applications like plant inspection, data gathering, spraying and selective harvesting could be performed by robots. In this paper multiple nonholonomic robots are used in order to create a desired formation scheme for screening solar energy in a greenhouse through data gathering. The formation consists from a leader and a team member equipped with appropriate sensors. Each robot is dedicated to its mission in the greenhouse that is predefined by the requirements of the application. The feasibility of the proposed application includes experimental results with three unmanned ground vehicles (UGV).

FHOJ: A New Java Benchmark Framework

There are some existing Java benchmarks, application benchmarks as well as micro benchmarks or mixture both of them,such as: Java Grande, Spec98, CaffeMark, HBech, etc. But none of them deal with behaviors of multi tasks operating systems. As a result, the achieved outputs are not satisfied for performance evaluation engineers. Behaviors of multi tasks operating systems are based on a schedule management which is employed in these systems. Different processes can have different priority to share the same resources. The time is measured by estimating from applications started to it is finished does not reflect the real time value which the system need for running those programs. New approach to this problem should be done. Having said that, in this paper we present a new Java benchmark, named FHOJ benchmark, which directly deals with multi tasks behaviors of a system. Our study shows that in some cases, results from FHOJ benchmark are far more reliable in comparison with some existing Java benchmarks.

Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Challenges of e-Government Services Adoption in Saudi Arabia from an e-Ready Citizen Perspective

More and more governments around the world are introducing e-government as a means of reducing costs, improving services, saving time and increasing effectiveness and efficiency in the public sector Therefore e-government has been identified as one of the top priorities for Saudi government and all its agencies. However, the adoption of e-government is facing many challenges and barriers such as technological, cultural, organizational, and social issues which must be considered and treated carefully by any government contemplating its adoption. This paper reports on a pilot study amongst online (e-ready) citizens to identify the challenges and barriers that affect the adoption of e-government services especially from their perspective in Saudi society. Based on the analysis of data collected from an online survey the researcher was able to identify some of the important barriers and challenges from the e-ready citizen perspective. As a result, this study has generated a list of possible strategies to move towards successful adoption of egovernment services in Saudi Arabia.

Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Utilization of 3-N-trimethylamino-1-propanol by Rhodococcus sp. strain A4 isolated from Natural Soil

The aim of this study was to screen for microorganism that able to utilize 3-N-trimethylamino-1-propanol (homocholine) as a sole source of carbon and nitrogen. The aerobic degradation of homocholine has been found by a gram-positive Rhodococcus sp. bacterium isolated from soil. The isolate was identified as Rhodococcus sp. strain A4 based on the phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The cells of the isolated strain grown on both basal-TMAP and nutrient agar medium displayed elementary branching mycelia fragmented into irregular rod and coccoid elements. Comparative 16S rDNA sequencing studies indicated that the strain A4 falls into the Rhodococcus erythropolis subclade and forms a monophyletic group with the type-strains of R. opacus, and R. wratislaviensis. Metabolites analysis by capillary electrophoresis, fast atom bombardment-mass spectrometry, and gas chromatography- mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of trimethylamino propanol in the isolated strain is through consequence oxidation of alcohol group (-OH) to aldehyde (-CHO) and acid (-COOH), and thereafter the cleavage of β-alanine betaine C-N bonds yielded trimethylamine and alkyl chain.

Evaluation Process for the Hardware Safety Integrity Level

Safety instrumented systems (SISs) are becoming increasingly complex and the proportion of programmable electronic parts is growing. The IEC 61508 global standard was established to ensure the functional safety of SISs, but it was expressed in highly macroscopic terms. This study introduces an evaluation process for hardware safety integrity levels through failure modes, effects, and diagnostic analysis (FMEDA).FMEDA is widely used to evaluate safety levels, and it provides the information on failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a given component. In our evaluation process, the components of the SIS subsystem are first defined in terms of failure modes and effects. Then, the failure rate and failure mechanism distribution are assigned to each component. The safety mode and detectability of each failure mode are determined for each component. Finally, the hardware safety integrity level is evaluated based on the calculated results.