Mathematical Modeling to Predict Surface Roughness in CNC Milling

Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.

A Graph-Based Approach for Placement of No-Replicated Databases in Grid

On a such wide-area environment as a Grid, data placement is an important aspect of distributed database systems. In this paper, we address the problem of initial placement of database no-replicated fragments in Grid architecture. We propose a graph based approach that considers resource restrictions. The goal is to optimize the use of computing, storage and communication resources. The proposed approach is developed in two phases: in the first phase, we perform fragment grouping using knowledge about fragments dependency and, in the second phase, we determine an efficient placement of the fragment groups on the Grid. We also show, via experimental analysis that our approach gives solutions that are close to being optimal for different databases and Grid configurations.

Digital Terrestrial Broadcasting Technologies and Implementation Status

Digital broadcasting has been an area of active research, development, innovation and business models development in recent years. This paper presents a survey on the characteristics of the digital terrestrial television broadcasting (DTTB) standards, and implementation status of DTTB worldwide showing the standards adopted. It is clear that only the developed countries and some in the developing ones shall be able to beat the ITU set analogue to digital broadcasting migration deadline because of the challenges that these countries faces in digitizing their terrestrial broadcasting. The challenges to keep on track the DTTB migration plan are also discussed in this paper. They include financial, technology gap, policies alignment with DTTB technology, etc. The reported performance comparisons for the different standards are also presented. The interesting part is that the results for many comparative studies depends to a large extent on the objective behind such studies, hence counter claims are common.

Constructing a Simple Polygonalizations

We consider the methods of construction simple polygons for a set S of n points and applying them for searching the minimal area polygon. In this paper we propose the approximate algorithm, which generates the simple polygonalizations of a fixed set of points and finds the minimal area polygon, in O (n3) time and using O(n2) memory.

Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Assessing Local Knowledge Dynamics: Regional Knowledge Economy Indicators

The paper represents a reflection on how to select proper indicators to assess the progress of regional contexts towards a knowledge-based society. Taking the first research methodologies elaborated at an international level (World Bank, OECD, etc.) as a reference point, this work intends to identify a set of indicators of the knowledge economy suitable to adequately understand in which manner and to which extent the territorial development dynamics are correlated with the knowledge-base of the considered local society. After a critical survey of the variables utilized within other approaches adopted by international or national organizations, this paper seeks to elaborate a framework of variables, named Regional Knowledge Economy Indicators (ReKEI), necessary to describe the knowledge-based relations of subnational socio-economic contexts. The realization of this framework has a double purpose: an analytical one consisting in highlighting the regional differences in the governance of knowledge based processes, and an operative one consisting in providing some reference parameters for contributing to increasing the effectiveness of those economic policies aiming at enlarging the knowledge bases of local societies.

Web Driving Performance Monitoring System

Safer driver behavior promoting is the main goal of this paper. It is a fact that drivers behavior is relatively safer when being monitored. Thus, in this paper, we propose a monitoring system to report specific driving event as well as the potentially aggressive events for estimation of the driving performance. Our driving monitoring system is composed of two parts. The first part is the in-vehicle embedded system which is composed of a GPS receiver, a two-axis accelerometer, radar sensor, OBD interface, and GPRS modem. The design considerations that led to this architecture is described in this paper. The second part is a web server where an adaptive hierarchical fuzzy system is proposed to classify the driving performance based on the data that is sent by the in-vehicle embedded system and the data that is provided by the geographical information system (GIS). Our system is robust, inexpensive and small enough to fit inside a vehicle without distracting the driver.

Effects of Drought on Yield and Some Yield Components of Chickpea

This research was conducted to determine responses of chickpeas to drought in different periods (early period, late period, no-irrigation, two times irrigation as control). The trial was made in “Randomized Complete Block Design" with three replications on 2010 and 2011 years in Konya-Turkey. Genotypes were consisted from 7 lines of ICARDA, 2 certified lines and 1 local population. The results showed that; as means of years and genotypes, early period stress showed highest (207.47 kg da-1) seed yield and it was followed by control (202.33 kg da-1), late period (144.64 kg da-1) and normal (106.93 kg da-1) stress applications. The genotypes were affected too much by drought and, the lowest seed was taken from non-irrigated plots. As the means of years and stress applications, the highest (196.01 kg da-1) yield was taken from genotype 22255. The reason of yield variation could be derived from different responses of genotypes to drought.

View-Point Insensitive Human Pose Recognition using Neural Network and CUDA

Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.

Impact of Fixation Time on Subjective Video Quality Metric: a New Proposal for Lossy Compression Impairment Assessment

In this paper, a new approach for quality assessment tasks in lossy compressed digital video is proposed. The research activity is based on the visual fixation data recorded by an eye tracker. The method involved both a new paradigm for subjective quality evaluation and the subsequent statistical analysis to match subjective scores provided by the observer to the data obtained from the eye tracker experiments. The study brings improvements to the state of the art, as it solves some problems highlighted in literature. The experiments prove that data obtained from an eye tracker can be used to classify videos according to the level of impairment due to compression. The paper presents the methodology, the experimental results and their interpretation. Conclusions suggest that the eye tracker can be useful in quality assessment, if data are collected and analyzed in a proper way.

Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Template-Based Object Detection through Partial Shape Matching and Boundary Verification

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

An Efficient Framework to Build Up Malware Dataset

This research paper presents a framework on how to build up malware dataset.Many researchers took longer time to clean the dataset from any noise or to transform the dataset into a format that can be used straight away for testing. Therefore, this research is proposing a framework to help researchers to speed up the malware dataset cleaningprocesses which later can be used for testing. It is believed, an efficient malware dataset cleaning processes, can improved the quality of the data, thus help to improve the accuracy and the efficiency of the subsequent analysis. Apart from that, an in-depth understanding of the malware taxonomy is also important prior and during the dataset cleaning processes. A new Trojan classification has been proposed to complement this framework.This experiment has been conducted in a controlled lab environment and using the dataset from VxHeavens dataset. This framework is built based on the integration of static and dynamic analyses, incident response method and knowledge database discovery (KDD) processes.This framework can be used as the basis guideline for malware researchers in building malware dataset.

Investigation of Various PWM Techniques for Shunt Active Filter

Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.

Nuclear Medical Image Treatment System Based On FPGA in Real Time

We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)

High Order Cascade Multibit ΣΔ Modulator for Wide Bandwidth Applications

A wideband 2-1-1 cascaded ΣΔ modulator with a single-bit quantizer in the two first stages and a 4-bit quantizer in the final stage is developed. To reduce sensitivity of digital-to-analog converter (DAC) nonlinearities in the feedback of the last stage, dynamic element matching (DEM) is introduced. This paper presents two modelling approaches: The first is MATLAB description and the second is VHDL-AMS modelling of the proposed architecture and exposes some high-level-simulation results allowing a behavioural study. The detail of both ideal and non-ideal behaviour modelling are presented. Then, the study of the effect of building blocks nonidealities is presented; especially the influences of nonlinearity, finite operational amplifier gain, amplifier slew rate limitation and capacitor mismatch. A VHDL-AMS description presents a good solution to predict system-s performances and can provide sensitivity curves giving the impact of nonidealities on the system performance.

Preliminary Tests on the Buffer Tank for the Vented Liquid Nitrogen Flow of an SRF Module

Since 2005, an SRF module of CESR type serves as the accelerating cavity at the Taiwan Light Source in the National Synchrotron Radiation Research Center. A 500-MHz niobium cavity is immersed in liquid helium inside this SRF module. To reduce heat load, the liquid helium vessel is thermally shielded by liquid-nitrogen-cooled copper layer, and the beam chambers are also anchored with pipes of the liquid nitrogen flow in middle of the liquid helium vessel and the vacuum vessel. A strong correlation of the movement of the cavity-s frequency tuner with the temperature variation of parts cooled with liquid nitrogen was observed. A previous study on a spare SRF module with the niobium cavity cooled by liquid nitrogen instead of liquid helium, satisfactory suppression of the thermal oscillation was achieved by attaching a temporary buffer tank for the vented shielding nitrogen flow from the SRF module. In this study, a home-made buffer tank is designed and integrated to the spare SRF module with cavity cooled by liquid helium. Design, construction, integration, and preliminary test results of this buffer tank are presented.

Hybrid Prefix Adder Architecture for Minimizing the Power Delay Product

Parallel Prefix addition is a technique for improving the speed of binary addition. Due to continuing integrating intensity and the growing needs of portable devices, low-power and highperformance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, fan-out and interconnect count of logic circuits. In this paper, a new architecture for performing 8-bit, 16-bit and 32-bit Parallel Prefix addition is proposed. The proposed prefix adder structures is compared with several classical adders of same bit width in terms of power, delay and number of computational nodes. The results reveal that the proposed structures have the least power delay product when compared with its peer existing Prefix adder structures. Tanner EDA tool was used for simulating the adder designs in the TSMC 180 nm and TSMC 130 nm technologies.

Search Engine Module in Voice Recognition Browser to Facilitate the Visually Impaired in Virtual Learning (MGSYS VISI-VL)

Nowadays, web-based technologies influence in people-s daily life such as in education, business and others. Therefore, many web developers are too eager to develop their web applications with fully animation graphics and forgetting its accessibility to its users. Their purpose is to make their web applications look impressive. Thus, this paper would highlight on the usability and accessibility of a voice recognition browser as a tool to facilitate the visually impaired and blind learners in accessing virtual learning environment. More specifically, the objectives of the study are (i) to explore the challenges faced by the visually impaired learners in accessing virtual learning environment (ii) to determine the suitable guidelines for developing a voice recognition browser that is accessible to the visually impaired. Furthermore, this study was prepared based on an observation conducted with the Malaysian visually impaired learners. Finally, the result of this study would underline on the development of an accessible voice recognition browser for the visually impaired.