Surface Roughness Optimization in End Milling Operation with Damper Inserted End Milling Cutters

This paper presents a study of the Taguchi design application to optimize surface quality in damper inserted end milling operation. Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various factors, using fewer resources than a factorial design. This Study included spindle speed, feed rate, and depth of cut as control factors, usage of different tools in the same specification, which introduced tool condition and dimensional variability. An orthogonal array of L9(3^4)was used; ANOVA analyses were carried out to identify the significant factors affecting surface roughness, and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing milling parameters for surface roughness.

3D Numerical Simulation of Scouring around Bridge Piers (Case Study: Bridge 524 Crosses the Tanana River)

Due to the three- dimensional flow pattern interacting with bed material, the process of local scour around bridge piers is complex. Modeling 3D flow field and scour hole evolution around a bridge pier is more feasible nowadays because the computational cost and computational time have significantly decreased. In order to evaluate local flow and scouring around a bridge pier, a completely three-dimensional numerical model, SSIIM program, was used. The model solves 3-D Navier-Stokes equations and a bed load conservation equation. The model was applied to simulate local flow and scouring around a bridge pier in a large natural river with four piers. Computation for 1 day of flood condition was carried out to predict the maximum local scour depth. The results show that the SSIIM program can be used efficiently for simulating the scouring in natural rivers. The results also showed that among the various turbulence models, the k-ω model gives more reasonable results.

Study on Specific Energy in Grinding of DRACs: A Response Surface Methodology Approach

In this study, the effects of machining parameters on specific energy during surface grinding of 6061Al-SiC35P composites are investigated. Vol% of SiC, feed and depth of cut were chosen as process variables. The power needed for the calculation of the specific energy is measured from the two watt meter method. Experiments are conducted using standard RSM design called Central composite design (CCD). A second order response surface model was developed for specific energy. The results identify the significant influence factors to minimize the specific energy. The confirmation results demonstrate the practicability and effectiveness of the proposed approach.

Social Interventation from Social Maternage to Peer Advocacy

The aim of this paper is to study in depth some methodological aspects of social interventation, focusing on desirable passage from social maternage method to peer advocacy method. For this purpose, we intend analyze social and organizative components, that affect operator-s professional action and that are part of his psychological environment, besides the physical and social one. In fact, operator-s interventation should not be limited to a pure supply of techniques, nor to take shape as improvised action, but “full of good purposes".

Research on Strategy for Automated Scaleless-Map Compilation

As a tool for human spatial cognition and thinking, the map has been playing an important role. Maps are perhaps as fundamental to society as language and the written word. Economic and social development requires extensive and in-depth understanding of their own living environment, from the scope of the overall global to urban housing. This has brought unprecedented opportunities and challenges for traditional cartography . This paper first proposed the concept of scaleless-map and its basic characteristics, through the analysis of the existing multi-scale representation techniques. Then some strategies are presented for automated mapping compilation. Taking into account the demand of automated map compilation, detailed proposed the software - WJ workstation must have four technical features, which are generalization operators, symbol primitives, dynamically annotation and mapping process template. This paper provides a more systematic new idea and solution to improve the intelligence and automation of the scaleless cartography.

Coded Transmission in Synthetic Transmit Aperture Ultrasound Imaging Method

The paper presents the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Signal-to-noise ratio and penetration depth are improved maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16-bit Golay coded sequences at nominal frequencies 4 MHz was used. Single element transmission aperture was used to generate a spherical wave covering the full image region and all the elements received the echo signals. The comparison of 2D ultrasound images of the wire phantom as well as of the tissue mimicking phantom is presented to demonstrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.

Mathematical Modeling of an Avalanche Release and Estimation of Flow Parameters by Numerical Method

Avalanche release of snow has been modeled in the present studies. Snow is assumed to be represented by semi-solid and the governing equations have been studied from the concept of continuum approach. The dynamical equations have been solved for two different zones [starting zone and track zone] by using appropriate initial and boundary conditions. Effect of density (ρ), Eddy viscosity (η), Slope angle (θ), Slab depth (R) on the flow parameters have been observed in the present studies. Numerical methods have been employed for computing the non linear differential equations. One of the most interesting and fundamental innovation in the present studies is getting initial condition for the computation of velocity by numerical approach. This information of the velocity has obtained through the concept of fracture mechanics applicable to snow. The results on the flow parameters have found to be in qualitative agreement with the published results.

A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences

Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.

Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Augmented Reality Interaction System in 3D Environment

It is important to give input information without other device in AR system. One solution is using hand for augmented reality application. Many researchers have proposed different solutions for hand interface in augmented reality. Analyze Histogram and connecting factor is can be example for that. Various Direction searching is one of robust way to recognition hand but it takes too much calculating time. And background should be distinguished with skin color. This paper proposes a hand tracking method to control the 3D object in augmented reality using depth device and skin color. Also in this work discussed relationship between several markers, which is based on relationship between camera and marker. One marker used for displaying virtual object and three markers for detecting hand gesture and manipulating the virtual object.

Modeling Erosion Control in Oil Production Wells

The sand production problem has led researchers into making various attempts to understand the phenomenon. The generally accepted concept is that the occurrence of sanding is due to the in-situ stress conditions and the induced changes in stress that results in the failure of the reservoir sandstone during hydrocarbon production from wellbores. By using a hypothetical cased (perforated) well, an approach to the problem is presented here by using Finite Element numerical modelling techniques. In addition to the examination of the erosion problem, the influence of certain key parameters is studied in order to ascertain their effect on the failure and subsequent erosion process. The major variables investigated include: drawdown, perforation depth, and the erosion criterion. Also included is the determination of the optimal mud pressure for given operational and reservoir conditions. The improved understanding between parameters enables the choice of optimal values to minimize sanding during oil production.

Effect of Dry Cutting on Force and Tool Life When Machining Aerospace Material

Cutting fluids, usually in the form of a liquid, are applied to the chip formation zone in order to improve the cutting conditions. Cutting fluid can be expensive and represents a biological and environmental hazard that requires proper recycling and disposal, thus adding to the cost of the machining operation. For these reasons dry cutting or dry machining has become an increasingly important approach; in dry machining no coolant or lubricant is used. This paper discussed the effect of the dry cutting on cutting force and tool life when machining aerospace materials (Haynes 242) with using two different coated carbide cutting tools (TiAlN and TiN/MT-TiCN/TiN). Response surface method (RSM) was used to minimize the number of experiments. ParTiAlN Swarm Optimisation (PSO) models were developed to optimize the machining parameters (cutting speed, federate and axial depth) and obtain the optimum cutting force and tool life. It observed that carbide cutting tool coated with TiAlN performed better in dry cutting compared with TiN/MT-TiCN/TiN. On other hand, TiAlN performed more superior with using of 100 % water soluble coolant. Due to the high temperature produced by aerospace materials, the cutting tool still required lubricant to sustain the heat transfer from the workpiece.

Flow Discharge Determination in Straight Compound Channels Using ANNs

Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.

Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Analysis on the Game-Playing Tendency of SNGs (Social Network Games) users by Gender

As the Social network game(SNG) is rising dramatically worldwide, an interesting aspect has appeared in the demographic analysis. That is the ratio of the game users by gender. Although the ratio of male and female users in online game was 60:40% previously, the ratio of male and female users in SNG stood at 47:53% which shows that the ratio of female users is higher than that of male users. Here, it should be noted that 35% in those 53% female users are the first-time users of game. This fact suggests that women who were not interested in game previously has taken an interest in SNG. Notwithstanding this issue, there have been little studies on the female users of SNG although there are many studies that analyzed the tendency of female users- online game play. This study conducted the analyzed how the game-playing tendency of SNG gamers was manifested in the game by gender. For that, this study will identify the tendency of SNG users by gender based on the preceding studies that analyzed the online game users by gender. The subject of this study was confined to the farm and urban construction simulation games which were offered based on the mobile application platform. Regarding the methodology of study, the first focus group interview(FGI) was conducted with the male and female users who had played games on Social network service(SNS) until recently. Later, the second one-on-one in-depth interview was conducted to gain an insight into the psychological state of the subjects.

A Numerical Study of a Droplet Impinging on a Liquid Surface

The Navier–Stokes equations for unsteady, incompressible, viscous fluids in the axisymmetric coordinate system are solved using a control volume method. The volume-of-fluid (VOF) technique is used to track the free-surface of the liquid. Model predictions are in good agreement with experimental measurements. It is found that the dynamic processes after impact are sensitive to the initial droplet velocity and the liquid pool depth. The time evolution of the crown height and diameter are obtained by numerical simulation. The critical We number for splashing (Wecr) is studied for Oh (Ohnesorge) numbers in the range of 0.01~0.1; the results compares well with those of the experiments.

Fabric Printing Design, an Inspired from the Five-Color Porcelain (Benjarong)

The study is about the designed and decorative fabric printing that derived from the Five-color porcelain (Benjarong). The researcher examined the pattern and creativity of the decorative design of the Five-color porcelain (Benjarong) by the artists in order to apply for contemporary arts so that young generation will acknowledge the importance of the Five-color porcelain (Benjarong). The research methodology is both quantitative and qualitative. The researcher conducted an in-depth interview with the operator of five-color porcelain (Benjarong) at Ampawa, Samutsongkram. The information from the interview can be useful and implemented for designing the fabric patterns. The researcher found that there were many formats and designs of the Five-color porcelain (Benjarong) from the past to the present. Its unique design can be applied for the fabric patterns and ready-to-wear clothes properly. After advertising and showing the work of the Five-color porcelain (Benjarong) publicly, there were more young people interested in the Five-color porcelain (Benjarong) than expected which exceeded the objective with positive attitudes towards the Five-color porcelain (Benjarong).

A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs

A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.

Column Size for R.C. Frames with High Drift

A method to predict the column size for displacement based design of reinforced concrete frame buildings with higher target inter storey drift is reported here. The column depth derived from empirical relation as a function of given beam section, target inter-story drift, building plan features and common displacement based design parameters is used. Regarding the high drift requirement, a minimum column-beam moment capacity ratio is maintained during capacity design. The method is used in designing four, eight and twelve story frame buildings with displacement based design for three percent target inter storey drift. Non linear time history analysis of the designed buildings are performed under five artificial ground motions to show that the columns are found elastic enough to avoid column sway mechanism assuring that for the design the column size can be used with or without minor changes.

Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis

The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG(electroencephalogram) including the non-linear characteristic. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. New index could afford to effectively discriminate the awake and anesthesia state.