Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption

This paper examines the use of mechanical aerator for oxidation-ditch process. The rotor, which controls the aeration, is the main component of the aeration process. Therefore, the objective of this study is to find out the variations in overall oxygen transfer coefficient (KLa) and aeration efficiency (AE) for different configurations of aerator by varying the parameters viz. speed of aerator, depth of immersion, blade tip angles so as to yield higher values of KLa and AE. Six different configurations of aerator were developed and fabricated in the laboratory and were tested for abovementioned parameters. The curved blade rotor (CBR) emerged as a potential aerator with blade tip angle of 47°. The mathematical models are developed for predicting the behaviour of CBR w.r.t kLa and power. In laboratory studies, the optimum value of KLa and AE were observed to be 10.33 h-1 and 2.269 kg O2/ kWh.

Difference in Psychological Well-Being Based On Comparison of Religions: A Case Study in Pekan District, Pahang, Malaysia

The psychological well-being of a family is a subjective matter for evaluation, all the more when it involves the element of religions, whether Islam, Christianity, Buddhism or Hinduism. Each of these religions emphasises similar values and morals on family psychological well-being. This comparative study is specifically to determine the role of religion on family psychological well-being in Pekan district, Pahang, Malaysia. The study adopts a quantitative and qualitative mixed method design and considers a total of 412 samples of parents and children for the quantitative study, and 21 samples for the qualitative study. The quantitative study uses simple random sampling, whereas the qualitative sampling is purposive. The instrument for quantitative study is Ryff’s Psychological Well-being Scale and the qualitative study involves the construction of a guidelines protocol for in-depth interviews of respondents. The quantitative study uses the SPSS version .19 with One Way Anova, and the qualitative analysis is manual based on transcripts with specific codes and themes. The results show nonsignificance, that is, no significant difference among religions in all family psychological well-being constructs in the comparison of Islam, Christianity, Buddhism and Hinduism, thereby accepting a null hypothesis and rejecting an alternative hypothesis. The qualitative study supports the quantitative study, that is, all 21 respondents explain that no difference exists in psychological wellbeing in the comparison of teachings in all the religious mentioned. These implications may be used as guidelines for government and non-government bodies in considering religion as an important element in family psychological well-being in the long run. 

A Previously Underappreciated Impact on Global Warming caused by the Geometrical and Physical Properties of desert sand

The previous researches focused on the influence of anthropogenic greenhouse gases exerting global warming, but not consider whether desert sand may warm the planet, this could be improved by accounting for sand's physical and geometric properties. Here we show, sand particles (because of their geometry) at the desert surface form an extended surface of up to 1 + π/4 times the planar area of the desert that can contact sunlight, and at shallow depths of the desert form another extended surface of at least 1 + π times the planar area that can contact air. Based on this feature, an enhanced heat exchange system between sunlight, desert sand, and air in the spaces between sand particles could be built up automatically, which can increase capture of solar energy, leading to rapid heating of the sand particles, and then the heating of sand particles will dramatically heat the air between sand particles. The thermodynamics of deserts may thus have contributed to global warming, especially significant to future global warming if the current desertification continues to expand.

Constructing a Suitable Model of Distance Training for Community Leader in the Upper Northeastern Region

The objective of this research intends to create a suitable model of distance training for community leaders in the upper northeastern region of Thailand. The implementation of the research process is divided into four steps: The first step is to analyze relevant documents. The second step deals with an interview in depth with experts. The third step is concerned with constructing a model. And the fourth step takes aim at model validation by expert assessments. The findings reveal the two important components for constructing an appropriate model of distance training for community leaders in the upper northeastern region. The first component consists of the context of technology management, e.g., principle, policy and goals. The second component can be viewed in two ways. Firstly, there are elements comprising input, process, output and feedback. Secondly, the sub-components include steps and process in training. The result of expert assessments informs that the researcher-s constructed model is consistent and suitable and overall the most appropriate.

Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Development, Verification and Clinical Trials

Functional gastrointestinal disorders affect millions of people spread all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Aim of this study is, therefore, to develop a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristic above related to the rigidity of the gastrointestinal tract well. Ultrasound system was designed. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders (Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normal specimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens (0.1±0.0Vp-p). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3Vp-p) were generally higher than those in normal group (0.1±0.2Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.

The Design of English Materials to communication the Identity of Amphawa District, Samut Songkram Province, for Sustainable Tourism

The main purpose of this research was to study how to communicate the identity of the Amphawa district, Samut Songkram province for sustainable tourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of the Amphawa District, Samut Songkram province is the area controlled by Amphawa sub district (submunicipality). The working unit which runs and looks after Amphawa sub district administration is known as the Amphawa mayor. This establishment was built to be a resort for normal people and tourists visiting the Amphawa district near the Maekong River consisting of rest accommodations. Along the river there is a restaurant where food and drinks are served, rich mangrove forests, a learning center, fireflies and cork trees. The Amphawa district was built to honor and commemorate King Rama II and is where the greatest number of fireflies and cork trees can be seen in Thailand from May to October each year. 2. The communication of the identity of Amphawa District, Samut Songkram Province which the researcher could find and design to present in English materials can be summed up in 5 items: 1) The history of the Amphawa District, Samut Songkram province 2) The history of King Rama II Memorial Park 3) The identity of Amphawa Floating Market 4) The Learning center of Ecosystem: Fireflies and Cork Trees 5) How to keep Amphawa District, Samut Songkram Province for sustainable tourism.

Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

The Internationalization of R&D and its Offshoring Process

Transnational corporations (TNCs) are playing a major role in global R&D, not only through activities in their home countries but also increasingly abroad. However, the process of R&D offshoring is not yet discussed thoroughly. Based on in-depth case study on Agilent China Communications Operation, this paper presents a stage model for theorizing the R&D offshoring process. This stage model outlines 5 maturity levels of organization and the offshoring process: Subsidiary team, Mirror team, Independent team, Mirror sector and the Independent sector (from software engineering point of view, it is similar to the local team's capability level of maturity model). Moreover, the paper gives a detailed discussion on the relevant characteristics, as well as the ability/responsibility of transfer, priorities and the corresponding organization structure. It also gives the characteristics and key points of different level-s R&D offshoring implementation using actual team practice.

A Multi-Phase Methodology for Investigating Localisation Policies within the GCC: The Hotel Industry in the KSA and the UAE

Due to a high unemployment rate among local people and a high reliance on expatriate workers, the governments in the Gulf Co-operation Council (GCC) countries have been implementing programmes of localisation (replacing foreign workers with GCC nationals). These programmes have been successful in the public sector but much less so in the private sector. However, there are now insufficient jobs for locals in the public sector and the onus to provide employment has fallen on the private sector. This paper is concerned with a study, which is a work in progress (certain elements are complete but not the whole study), investigating the effective implementation of localisation policies in four- and five-star hotels in the Kingdom of Saudi Arabia (KSA) and the United Arab Emirates (UAE). The purpose of the paper is to identify the research gap, and to present the need for the research. Further, it will explain how this research was conducted. Studies of localisation in the GCC countries are under-represented in scholarly literature. Currently, the hotel sectors in KSA and UAE play an important part in the countries’ economies. However, the total proportion of Saudis working in the hotel sector in KSA is slightly under 8%, and in the UAE, the hotel sector remains highly reliant on expatriates. There is therefore a need for research on strategies to enhance the implementation of the localisation policies in general and in the hotel sector in particular. Further, despite the importance of the hotel sector to their economies, there remains a dearth of research into the implementation of localisation policies in this sector. Indeed, as far as the researchers are aware, there is no study examining localisation in the hotel sector in KSA, and few in the UAE. This represents a considerable research gap. Regarding how the research was carried out, a multiple case study strategy was used. The four- and five-star hotel sector in KSA is one of the cases, while the four- and five-star hotel sector in the UAE is the other case. Four- and five-star hotels in KSA and the UAE were chosen as these countries have the longest established localisation policies of all the GCC states and there are more hotels of these classifications in these countries than in any of the other Gulf countries. A literature review was carried out to underpin the research. The empirical data were gathered in three phases. In order to gain a pre-understanding of the issues pertaining to the research context, Phase I involved eight unstructured interviews with officials from the Saudi Commission for Tourism and Antiquities (three interviewees); the Saudi Human Resources Development Fund (one); the Abu Dhabi Tourism and Culture Authority (three); and the Abu Dhabi Development Fund (one). In Phase II, a questionnaire was administered to 24 managers and 24 employees in four- and five-star hotels in each country to obtain their beliefs, attitudes, opinions, preferences and practices concerning localisation. Unstructured interviews were carried out in Phase III with six managers in each country in order to allow them to express opinions that may not have been explored in sufficient depth in the questionnaire. The interviews in Phases I and III were analysed using thematic analysis and SPSS will be used to analyse the questionnaire data. It is recommended that future research be undertaken on a larger scale, with a larger sample taken from all over KSA and the UAE rather than from only four cities (i.e., Riyadh and Jeddah in KSA and Abu Dhabi and Sharjah in the UAE), as was the case in this research.

A Preemptive Link State Spanning Tree Source Routing Scheme for Opportunistic Data Forwarding in MANET

Opportunistic Data Forwarding (ODF) has drawn much attention in mobile adhoc networking research in recent years. The effectiveness of ODF in MANET depends on a suitable routing protocol which provides a powerful source routing services. PLSR is featured by source routing, loop free and small routing overhead. The update messages in PLSR are integrated into a tree structure and no need to time stamp routing updates which reduces the routing overhead.

Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions

Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.

Analytical and Finite Element Analysis of Hydroforming Deep Drawing Process

This paper gives an overview of a deep drawing process by pressurized liquid medium separated from the sheet by a rubber diaphragm. Hydroforming deep drawing processing of sheet metal parts provides a number of advantages over conventional techniques. It generally increases the depth to diameter ratio possible in cup drawing and minimizes the thickness variation of the drawn cup. To explore the deformation mechanism, analytical and numerical simulations are used for analyzing the drawing process of an AA6061-T4 blank. The effects of key process parameters such as coefficient of friction, initial thickness of the blank and radius between cup wall and flange are investigated analytically and numerically. The simulated results were in good agreement with the results of the analytical model. According to finite element simulations, the hydroforming deep drawing method provides a more uniform thickness distribution compared to conventional deep drawing and decreases the risk of tearing during the process.

Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study

Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.

Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Structural Cost of Optimized Reinforced Concrete Isolated Footing

This paper presents an analytical model to estimate the cost of an optimized design of reinforced concrete isolated footing base on structural safety. Flexural and optimized formulas for square and rectangular footingare derived base on ACI building code of design, material cost and optimization. The optimization constraints consist of upper and lower limits of depth and area of steel. Footing depth and area of reinforcing steel are to be minimized to yield the optimal footing dimensions. Optimized footing materials cost of concrete, reinforcing steel and formwork of the designed sections are computed. Total cost factor TCF and other cost factors are developed to generalize and simplify the calculations of footing material cost. Numerical examples are presented to illustrate the model capability of estimating the material cost of the footing for a desired axial load.

Modeling of Single-Particle Impact in Abrasive Water Jet Machining

This work presents a study on the abrasive water jet (AWJ) machining. An explicit finite element analysis (FEA) of single abrasive particle impact on stainless steel 1.4304 (AISI 304) is conducted. The abrasive water jet machining is modeled by FEA software ABAQUS/CAE. Shapes of craters in FEM simulation results were used and compared with the previous experimental and FEM works by means of crater sphericity. The influence of impact angle and particle velocity was observed. Adaptive mesh domain is used to model the impact zone. Results are in good agreement with those obtained from the experimental and FEM simulation. The crater-s depth is also obtained for different impact angle and abrasive particle velocities.

Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic

Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.

Social Networks and Absorptive Capacity

The resource-based view of the firm regards knowledge as one of the most important organizational assets and a key strategic resource that contributes unique value to organizations. The acquisition, absorption and internalization of external knowledge are central to an organization-s innovative capabilities. This ability to evaluate, acquire and integrate new knowledge from its environment is referred to as a firm-s absorptive capacity (AC). This research in progress paper explores the link between interorganizational Social Networks (SNs) and a firm-s Absorptive Capacity (AC). Based on an in-depth literature survey of both concepts, four propositions are proposed that explain the link between AC and SNs. These propositions suggest that SNs are key to a firm-s AC. A qualitative research method is proposed to test the set of propositions in the next stage of this research.