Influence of Different Thicknesses on Mechanical and Corrosion Properties of α-C:H Films

The hydrogenated amorphous carbon films (α-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like carbon (DLC) peaks, representative of the α-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the α-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values showed the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electrochemical properties showed that the α-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited α-C:H films exhibited excellent mechanical properties and corrosion resistance.

Post Earthquake Volunteer Learning That Build Up Caring Learning Communities

From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.

On Supporting a Meta-design Approach in Socio-Technical Ontology Engineering

Many studies have revealed the fact of the complexity of ontology building process. Therefore there is a need for a new approach which one of that addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model of socio-technical ontology engineering. Principles in the meta-design framework are applied in the construction phases of the ontology. A web portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a semantic web application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Spatial Data Mining by Decision Trees

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials

To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and microstructures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron backscatter diffraction (EBSD) analyses.

An Approach for Modeling CMOS Gates

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Correlation and Prediction of Biodiesel Density

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

A Holistic Workflow Modeling Method for Business Process Redesign

In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process.

Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

A Comparative Analysis of Different Web Content Mining Tools

Nowadays, the Web has become one of the most pervasive platforms for information change and retrieval. It collects the suitable and perfectly fitting information from websites that one requires. Data mining is the form of extracting data’s available in the internet. Web mining is one of the elements of data mining Technique, which relates to various research communities such as information recovery, folder managing system and simulated intellects. In this Paper we have discussed the concepts of Web mining. We contain generally focused on one of the categories of Web mining, specifically the Web Content Mining and its various farm duties. The mining tools are imperative to scanning the many images, text, and HTML documents and then, the result is used by the various search engines. We conclude by presenting a comparative table of these tools based on some pertinent criteria.

Experimental Investigation on Tsunami Acting on Bridges

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Slope Effect in Emission Evaluation to Assess Real Pollutant Factors

The exposure to outdoor air pollution causes lung cancer and increases the risk of bladder cancer. Because air pollution in urban areas is mainly caused by transportation, it is necessary to evaluate pollutant exhaust emissions from vehicles during their realworld use. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars. Finally the slope analysis can be correlated to the emission and consumption values in a specific road position, and it could be evaluated its influence on their behaviour.

Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil

Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity of stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.

High-Voltage Resonant Converter with Extreme Load Variation: Design Criteria and Applications

The power converter that feeds high-frequency, highvoltage transformers must be carefully designed due to parasitic components, mainly the secondary winding capacitance and the leakage inductance, that introduces resonances in relatively lowfrequency range, next to the switching frequency. This paper considers applications in which the load (resistive) has an unpredictable behavior, changing from open to short-circuit condition faster than the output voltage control loop could react. In this context, to avoid overvoltage and over current situations, that could damage the converter, the transformer or the load, it is necessary to find an operation point that assure the desired output voltage in spite of the load condition. This can done adjusting the frequency response of the transformer adding an external inductance, together with selecting the switching frequency to get stable output voltage independently of the load.

Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted

The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.

The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites

The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA and CLA, respectively, with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites

Performance Evaluation of Al Jame’ Roundabout Using SIDRA

This paper evaluates the performance of a multi-lane four legged modern roundabout operating in Muscat using SIDRA model. The performance measures include Degree of Saturation (DOS), average delay, and queue lengths. The geometric and traffic data were used for model preparation. Gap acceptance parameters, critical gap and follow up headway, were used for calibration of SIDRA model. The results from the analysis showed that currently the roundabout is experiencing delays up to 610 seconds per vehicle with DOS 1.67 during peak hour. Further, sensitivity analysis for general and roundabout parameters was performed, amongst lane width, cruise speed, inscribed diameter, entry radius and entry angle showed that inscribed diameter is most crucial factor affecting delay and DOS. Up gradation of roundabout to fully signalized junction was found as the suitable solution which will serve for future years with LOS C for design year having DOS of 0.9 with average control delay of 51.9 seconds per vehicle.

Some Morphological Characteristics of Perennial Ryegrass Genotypes and Correlations among Their Characteristics

The present study involved analysis of certain characteristics of the perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara, and explores a correlation among them. In order to evaluate the plants for breeding purpose as per Turkey's environmental conditions, the perennial ryegrass plants were collected from natural pasture of Ankara in 2004 and were utilized for the study. Seeds of the collected plants were sown in pots and seedlings were prepared in a greenhouse. In 2005, the seedlings were transplanted at 50 × 50 cm2 intervals in Randomized Complete Blocks Design in an experimental field. In 2007 and 2008, data were recorded from the observations and measurements of 568 perennial ryegrasses. The plant characteristics, which were investigated, included re-growth time in spring, color, density, growth habit, tendency to form inflorescence, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike and 1000 grain weight and the correlation analyses were made using this data. Correlation coefficients were estimated between all paired combinations of the studied traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with the number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with the growth habit and re-growth time in spring.

Application of RS and GIS Technique for Identifying Groundwater Potential Zone in Gomukhi Nadhi Sub Basin, South India

India holds 17.5% of the world’s population but has only 2% of the total geographical area of the world where 27.35% of the area is categorized as wasteland due to lack of or less groundwater. So there is a demand for excessive groundwater for agricultural and non agricultural activities to balance its growth rate. With this in mind, an attempt is made to find the groundwater potential zone in Gomukhi Nadhi sub basin of Vellar River basin, TamilNadu, India covering an area of 1146.6 Sq.Km consists of 9 blocks from Peddanaickanpalayam to Virudhachalam in the sub basin. The thematic maps such as Geology, Geomorphology, Lineament, Landuse and Landcover and Drainage are prepared for the study area using IRS P6 data. The collateral data includes rainfall, water level, soil map are collected for analysis and inference. The digital elevation model (DEM) is generated using Shuttle Radar Topographic Mission (SRTM) and the slope of the study area is obtained. ArcGIS 10.1 acts as a powerful spatial analysis tool to find out the ground water potential zones in the study area by means of weighted overlay analysis. Each individual parameter of the thematic maps are ranked and weighted in accordance with their influence to increase the water level in the ground. The potential zones in the study area are classified viz., Very Good, Good, Moderate, Poor with its aerial extent of 15.67, 381.06, 575.38, 174.49 Sq.Km respectively.

Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.