An Attempt to Predict the Performances of a Rocket Thrust Chamber

The process for predicting the ballistic properties of a liquid rocket engine is based on the quantitative estimation of idealized performance deviations. In this aim, an equilibrium chemistry procedure is firstly developed and implemented in a Fortran routine. The thermodynamic formulation allows for the calculation of the theoretical performances of a rocket thrust chamber. In a second step, a computational fluid dynamic analysis of the turbulent reactive flow within the chamber is performed using a finite volume approach. The obtained values for the “quasi-real" performances account for both turbulent mixing and chemistryturbulence coupling. In the present work, emphasis is made on the combustion efficiency performance for which deviation is mainly due to radial gradients of static temperature and mixture ratio. Numerical values of the characteristic velocity are successfully compared with results from an industry-used code. The results are also confronted with the experimental data of a laboratory-scale rocket engine.

In vivo Histomorphometric and Corrosion Analysis of Ti-Ni-Cr Shape Memory Alloys in Rabbits

A series of Ti based shape memory alloys with composition of Ti50Ni49Cr1, Ti50Ni47Cr3 and Ti50Ni45Cr5 were developed by vacuum arc-melting under a purified argon atmosphere. The histometric and corrosion evaluation of Ti-Ni-Cr shape memory alloys have been considered in this research work. The alloys were developed by vacuum arc melting and implanted subcutaneously in rabbits for 4, 8 and 12 weeks. Metallic implants were embedded in order to determine the outcome of implantation on histometric and corrosion evaluation of Ti-Ni-Cr metallic strips. Encapsulating membrane formation around the alloys was minimal in the case of all materials. After histomorphometric analyses it was possible to demonstrate that there were no statistically significant differences between the materials. Corrosion rate was also determined in this study which is within acceptable range. The results showed the Ti- Ni-Cr alloy was neither cytotoxic, nor have any systemic reaction on living system in any of the test performed. Implantation shows good compatibility and a potential of being used directly in vivo system.

Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Chitosan Nanoparticle as a Novel Delivery System for A/H1n1 Influenza Vaccine: Safe Property and Immunogenicity in Mice

The aims of this paper are to study the efficacy of chitosan nanoparticles in stimulating specific antibody against A/H1N1 influenza antigen in mice. Chitosan nanoparticles (CSN) were characterized by TEM. The results showed that the average size of CSN was from 80nm to 106nm. The efficacy of A/H1N1 influenza vaccine loaded on the surface of CSN showed that loading efficiency of A/H1N1 influenza antigen on CSN was from 93.75 to 100%. Safe property of the vaccine were tested. In 10 days post vaccination, group of CSN 30 kDa and 300 kDa loaded A/H1N1 influenza antigen were the rate of immune response on mice to be 100% (9/9) higher than Al(OH)3 and other adjuvant. 100% mice in the experiment of all groups had immune response in 20 days post vaccination. The results also showed that HI titer of the group using CSN 300 kDa as an adjuvant increased significantly up to 3971 HIU, over three-fold higher than the Al(OH)3 adjuvant, chitosan (CS), and one hundredfold than the A/H1N1 antigen only. Stability of the vaccine formulation was investigated.

Effectiveness of Moringa oleifera Coagulant Protein as Natural Coagulant aid in Removal of Turbidity and Bacteria from Turbid Waters

Coagulation of water involves the use of coagulating agents to bring the suspended matter in the raw water together for settling and the filtration stage. Present study is aimed to examine the effects of aluminum sulfate as coagulant in conjunction with Moringa Oleifera Coagulant Protein as coagulant aid on turbidity, hardness, and bacteria in turbid water. A conventional jar test apparatus was employed for the tests. The best removal was observed at a pH of 7 to 7.5 for all turbidities. Turbidity removal efficiency was resulted between % 80 to % 99 by Moringa Oleifera Coagulant Protein as coagulant aid. Dosage of coagulant and coagulant aid decreased with increasing turbidity. In addition, Moringa Oleifera Coagulant Protein significantly has reduced the required dosage of primary coagulant. Residual Al+3 in treated water were less than 0.2 mg/l and meets the environmental protection agency guidelines. The results showed that turbidity reduction of % 85.9- % 98 paralleled by a primary Escherichia coli reduction of 1-3 log units (99.2 – 99.97%) was obtained within the first 1 to 2 h of treatment. In conclusions, Moringa Oleifera Coagulant Protein as coagulant aid can be used for drinking water treatment without the risk of organic or nutrient release. We demonstrated that optimal design method is an efficient approach for optimization of coagulation-flocculation process and appropriate for raw water treatment.

Region-Based Segmentation of Generic Video Scenes Indexing

In this work we develop an object extraction method and propose efficient algorithms for object motion characterization. The set of proposed tools serves as a basis for development of objectbased functionalities for manipulation of video content. The estimators by different algorithms are compared in terms of quality and performance and tested on real video sequences. The proposed method will be useful for the latest standards of encoding and description of multimedia content – MPEG4 and MPEG7.

On the Move to Semantic Web Services

Semantic Web services will enable the semiautomatic and automatic annotation, advertisement, discovery, selection, composition, and execution of inter-organization business logic, making the Internet become a common global platform where organizations and individuals communicate with each other to carry out various commercial activities and to provide value-added services. There is a growing consensus that Web services alone will not be sufficient to develop valuable solutions due the degree of heterogeneity, autonomy, and distribution of the Web. This paper deals with two of the hottest R&D and technology areas currently associated with the Web – Web services and the Semantic Web. It presents the synergies that can be created between Web Services and Semantic Web technologies to provide a new generation of eservices.

Comparing Arabic and Latin Handwritten Digits Recognition Problems

A comparison between the performance of Latin and Arabic handwritten digits recognition problems is presented. The performance of ten different classifiers is tested on two similar Arabic and Latin handwritten digits databases. The analysis shows that Arabic handwritten digits recognition problem is easier than that of Latin digits. This is because the interclass difference in case of Latin digits is smaller than in Arabic digits and variances in writing Latin digits are larger. Consequently, weaker yet fast classifiers are expected to play more prominent role in Arabic handwritten digits recognition.

SEM and AFM Investigations of Surface Defects and Tool Wear of Multilayers Coated Carbide Inserts

Coated tool inserts can be considered as the backbone of machining processes due to their wear and heat resistance. However, defects of coating can degrade the integrity of these inserts and the number of these defects should be minimized or eliminated if possible. Recently, the advancement of coating processes and analytical tools open a new era for optimizing the coating tools. First, an overview is given regarding coating technology for cutting tool inserts. Testing techniques for coating layers properties, as well as the various coating defects and their assessment are also surveyed. Second, it is introduced an experimental approach to examine the possible coating defects and flaws of worn multicoated carbide inserts using two important techniques namely scanning electron microscopy and atomic force microscopy. Finally, it is recommended a simple procedure for investigating manufacturing defects and flaws of worn inserts.

Object Speed Estimation by using Fuzzy Set

Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.

Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing

This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.

Simulation of Robotic Arm using Genetic Algorithm and AHP

In this paper, we have proposed a low cost optimized solution for the movement of a three-arm manipulator using Genetic Algorithm (GA) and Analytical Hierarchy Process (AHP). A scheme is given for optimizing the movement of robotic arm with the help of Genetic Algorithm so that the minimum energy consumption criteria can be achieved. As compared to Direct Kinematics, Inverse Kinematics evolved two solutions out of which the best-fit solution is selected with the help of Genetic Algorithm and is kept in search space for future use. The Inverse Kinematics, Fitness Value evaluation and Binary Encoding like tasks are simulated and tested. Although, three factors viz. Movement, Friction and Least Settling Time (or Min. Vibration) are used for finding the Fitness Function / Fitness Values, however some more factors can also be considered.

Hydrogen Sulphide Removal Using a Novel Biofilter Media

Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.

Urban Air Pollution – Trend and Forecasting of Major Pollutants by Timeseries Analysis

The Bangalore City is facing the acute problem of pollution in the atmosphere due to the heavy increase in the traffic and developmental activities in recent years. The present study is an attempt in the direction to assess trend of the ambient air quality status of three stations, viz., AMCO Batteries Factory, Mysore Road, GRAPHITE INDIA FACTORY, KHB Industrial Area, Whitefield and Ananda Rao Circle, Gandhinagar with respect to some of the major criteria pollutants such as Total Suspended particular matter (SPM), Oxides of nitrogen (NOx), and Oxides of sulphur (SO2). The sites are representative of various kinds of growths viz., commercial, residential and industrial, prevailing in Bangalore, which are contributing to air pollution. The concentration of Sulphur Dioxide (SO2) at all locations showed a falling trend due to use of refined petrol and diesel in the recent years. The concentration of Oxides of nitrogen (NOx) showed an increasing trend but was within the permissible limits. The concentration of the Suspended particular matter (SPM) showed the mixed trend. The correlation between model and observed values is found to vary from 0.4 to 0.7 for SO2, 0.45 to 0.65 for NOx and 0.4 to 0.6 for SPM. About 80% of data is observed to fall within the error band of ±50%. Forecast test for the best fit models showed the same trend as actual values in most of the cases. However, the deviation observed in few cases could be attributed to change in quality of petro products, increase in the volume of traffic, introduction of LPG as fuel in many types of automobiles, poor condition of roads, prevailing meteorological conditions, etc.

The Effect of Ultrasound Pre-Treatment on Froth Flotation Performance

The aim of this study is to compare the effect of the ultrasonic pre treatment on the removal of heavy metals (Iron, Zinc and Copper) from Acid Mine Drainage (AMD) by Denver Cell flotation. Synthetic AMD and individual metal solutions are used in the initial experiments to optimise the process conditions for real AMD. Three different process methods, ultrasound treatment followed by Denver flotation cell, Denver flotation cell alone and ultrasonic treatments run simultaneously with the Denver flotation cell were tested for every sample. Precipitation of the metal solutions by using sodium hydroxide (NaOH) and application of the optimum frother dosage followed by flotation significantly reduced the metal content of the AMD.

Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel

In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques.

Evaluating Complexity – Ethical Challenges in Computational Design Processes

Complexity, as a theoretical background has made it easier to understand and explain the features and dynamic behavior of various complex systems. As the common theoretical background has confirmed, borrowing the terminology for design from the natural sciences has helped to control and understand urban complexity. Phenomena like self-organization, evolution and adaptation are appropriate to describe the formerly inaccessible characteristics of the complex environment in unpredictable bottomup systems. Increased computing capacity has been a key element in capturing the chaotic nature of these systems. A paradigm shift in urban planning and architectural design has forced us to give up the illusion of total control in urban environment, and consequently to seek for novel methods for steering the development. New methods using dynamic modeling have offered a real option for more thorough understanding of complexity and urban processes. At best new approaches may renew the design processes so that we get a better grip on the complex world via more flexible processes, support urban environmental diversity and respond to our needs beyond basic welfare by liberating ourselves from the standardized minimalism. A complex system and its features are as such beyond human ethics. Self-organization or evolution is either good or bad. Their mechanisms are by nature devoid of reason. They are common in urban dynamics in both natural processes and gas. They are features of a complex system, and they cannot be prevented. Yet their dynamics can be studied and supported. The paradigm of complexity and new design approaches has been criticized for a lack of humanity and morality, but the ethical implications of scientific or computational design processes have not been much discussed. It is important to distinguish the (unexciting) ethics of the theory and tools from the ethics of computer aided processes based on ethical decisions. Urban planning and architecture cannot be based on the survival of the fittest; however, the natural dynamics of the system cannot be impeded on grounds of being “non-human". In this paper the ethical challenges of using the dynamic models are contemplated in light of a few examples of new architecture and dynamic urban models and literature. It is suggested that ethical challenges in computational design processes could be reframed under the concepts of responsibility and transparency.

Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.

Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via handson by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.