Production of Biodiesel from Different Edible Oils

Different vegetable oil based biodiesel (FAMES) were prepared by alkaline transesterification using refined oils as well as waste frying oil (WFO). Methanol and sodium hydroxide are used as catalyst under similar reaction conditions. To ensure the quality of biodiesel produced, a series of different ASTM Standard tests were carried out. In this context, various testwere done including viscosity, carbon residue, specific gravity, corrosion test, flash point, cloud point and pour point. Results revealed that characteristics of biodiesel depend on the feedstock and it is far better than petroleum diesel.

Low Frequency Noise Behavior of Independent Gate Junctionless FinFET

In this paper we use low frequency noise analysis to understand and map the current conduction path in a multi gate junctionless FinFET.  The device used in this study behaves as a gated resistor and shows excellent short channel effect suppression due to its multi gate structure. Generally for a bulk conduction device like the junctionless device studied in this work, the low frequency noise can be modelled using the mobility fluctuation model; however for this device we can also see the effect of carrier fluctuations on the LFN characteristic. The noise characteristic at different gate bias and also the possible location of the traps is explained.

Response Time Behavior Trends of Proptional, Propotional Integral and Proportional Integral Derivative Mode on Lab Scale

The industrial automation is dependent upon pneumatic control systems. The industrial units are now controlled with digital control systems to tackle the process variables like Temperature, Pressure, Flow rates and Composition. This research work produces an evaluation of the response time fluctuations for proportional mode, proportional integral and proportional integral derivative modes of automated chemical process control. The controller output is measured for different values of gain with respect to time in three modes (P, PI and PID). In case of P-mode for different values of gain the controller output has negligible change. When the controller output of PI-mode is checked for constant gain, it can be seen that by decreasing the integral time the controller output has showed more fluctuations. The PID mode results have found to be more interesting in a way that when rate minute has changed, the controller output has also showed fluctuations with respect to time.  The controller output for integral mode and derivative mode are observed with lesser steady state error, minimum offset and larger response time to control the process variable.   The tuning parameters in case of P-mode are only steady state gain with greater errors with respect to controller output. The integral mode showed controller outputs with intermediate responses during integral gain (ki).  By increasing the rate minute the derivative gain (kd) also increased which showed the controlled oscillations in case of PID mode and lesser overshoot.

The Link between Ergonomics and Occupational Diseases

Ergonomics is a useful tool for creating a healthy and safe workplace. The long-term action of harmful conditions on the health of workers is the emergence of occupational disease, and the firm-s increased compensation costs associated with these diseases, but is also the loss of time needed for educating and including new workers in the work process. The article deals with the link of ergonomics to occupational diseases, factors which influence these diseases. In the conclusion, a model is described to help reduce the risk of selected occupational diseases using ergonomic principles and knowledge.

Wireless Communicated Smart Wind Sensor

Development of microprocessor controlled sensor for measurement of wind speed and direction is the aim of this study. Electrical circuits and software were developed to the existing electromechanical part of the sensor TM-W2 becoming the properties of so-called smart sensor. The measured data about wind speed (sensitivity 0.01 m/s) and direction (0-360° by step 10°) are transmitted as 16-bit information. The connection between sensor and control unit is realized by radio communication (FM 433 MHz). Transition range is 220 m if used Quad type antenna. This concept provides substitution of actual cable systems by wireless ones.

Perceptions and Attitudes towards Infant-s Physical Health and Caring: Immigrants and Native Born Mothers

Purpose: To compare attitudes and perceptions of Israeli native born mothers versus former Soviet Union (FSU) immigrant mothers regarding the physical health of their infant. Methodology: cross-sectional design. A convenience sample of 50 participants was recruited by face to face and snowball technique. A questionnaire was constructed according to the instructions of the Ministry of Health for the care and treatment of infants. The main areas explored were: sources of knowledge that the young mother acquired regarding the care of her infant, ways of caring for the infant, hygiene and sanitary habits, and the pattern of referral to health professionals. The last topic relates to emotions mothers might experience towards their infant. Results: Mothers from both cultural groups present some similar caring behaviors, which may express a universal aspect of mothers' behavior towards their infants. However, immigrant mothers differ significantly from native born by relying less on their mothers' and grandmothers' experience, they wean their infants from diapers earlier, they are stricter about hygiene and sanitary habits and they tend to consult a physician when their infant has low fever. Native born and immigrant mothers differ in their expressions of pride and wonder. Immigrant mothers report of a lesser degree of these emotions towards their infants than native born mothers. Conclusion: The theoretical model of socialization and acculturation of immigrant mothers is employed as an explanatory model for the current findings Young immigrant mothers undergo a complex acculturation process and adapt behavioral patterns in various areas to comply with Israeli norms and values, demonstrating assimilation. In other areas they adhere to the norms of their original culture.

Real Time Detection, Tracking and Recognition of Medication Intake

In this paper, the detection and tracking of face, mouth, hands and medication bottles in the context of medication intake monitoring with a camera is presented. This is aimed at recognizing medication intake for elderly in their home setting to avoid an inappropriate use. Background subtraction is used to isolate moving objects, and then, skin and bottle segmentations are done in the RGB normalized color space. We use a minimum displacement distance criterion to track skin color regions and the R/G ratio to detect the mouth. The color-labeled medication bottles are simply tracked based on the color space distance to their mean color vector. For the recognition of medication intake, we propose a three-level hierarchal approach, which uses activity-patterns to recognize the normal medication intake activity. The proposed method was tested with three persons, with different medication intake scenarios, and gave an overall precision of over 98%.

Building a Service-Centric Business Model in SMEs in the Business-to-Business Context

Building a service-centric business model requires new knowledge and capabilities in companies. This paper enlightens the challenges small and medium sized firms (SMEs) face when developing their service-centric business models. This paper examines the premise for knowledge transfer and capability development required. The objective of this paper is to increase knowledge about SME-s transformation to service-centric business models.This paper reports an action research based case study. The paper provides empirical evidence from three case companies. The empirical data was collected through multiple methods. The findings of the paper are: First, the developed model to analyze the current state in companies. Second, the process of building the service – centric business models. Third, the selection of suitable service development methods. The lack of a holistic understanding on service logic suggests that SMEs need practical and easy to use methods to improve their business

Secondary Ion Mass Spectrometry of Proteins

The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.

Inulin and Fructooligosaccharides Incorporated Functional Fruit Bars

Papaya and banana bars were developed incorporating inulin (IN) and fructooligosaccharides (FOS) (Liquid and Powder form) in various proportions. The control bars were standardized using 70% fruit pulp, 30% sugar, 0.3% citric acid while the treated bars were standardized with 70% fruit pulp, 15% sugar, 15% of IN and FOS and 0.3% citric acid. Among the various proportions tested, papaya bars with 90% FOS (Powder) + 10% IN and banana bars with 90% FOS (liquid) + 10% IN were sensorially best accepted. The study revealed that addition of IN and FOS improved the sensory scores. The Physico-chemical and proximatecomposition analysis revealed slight changes in brix°, total sugars, reducing sugars, nonreducing sugars, moisture, protein, fat, vitamin C, ash, iron, zinc, calcium and crude fibre between control and treated fruit bars. Further the glycemic index of papaya bar was reduced from 65 to 54 when treated with FOS and IN.

A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Application of Double Side Approach Method on Super Elliptical Winkler Plate

In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use.

Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration

In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.

Smart Cane Assisted Mobility for the Visually Impaired

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks

Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.

EDULOGIC+ - Knowledge Management through Data Analysis in Education

This paper outlines the application of Knowledge Management (KM) principles in the context of Educational institutions. The paper caters to the needs of the engineering institutions for imparting quality education by delineating the instruction delivery process in a highly structured, controlled and quantified manner. This is done using a software tool EDULOGIC+. The central idea has been based on the engineering education pattern in Indian Universities/ Institutions. The data, contents and results produced over contiguous years build the necessary ground for managing the related accumulated knowledge. Application of KM has been explained using certain examples of data analysis and knowledge extraction.

Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Interdisciplinary Principles of Field-Like Coordination in the Case of Self-Organized Social Systems1

This interdisciplinary research aims to distinguish universal scale-free and field-like fundamental principles of selforganization observable across many disciplines like computer science, neuroscience, microbiology, social science, etc. Based on these universal principles we provide basic premises and postulates for designing holistic social simulation models. We also introduce pervasive information field (PIF) concept, which serves as a simulation media for contextual information storage, dynamic distribution and organization in social complex networks. PIF concept specifically is targeted for field-like uncoupled and indirect interactions among social agents capable of affecting and perceiving broadcasted contextual information. Proposed approach is expressive enough to represent contextual broadcasted information in a form locally accessible and immediately usable by network agents. This paper gives some prospective vision how system-s resources (tangible and intangible) could be simulated as oscillating processes immersed in the all pervasive information field.

The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Cardiac Disorder Classification Based On Extreme Learning Machine

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.