Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Effects of Wastewater Strength and Salt Stress on Microalgal Biomass Production and Lipid Accumulation

This work aims to investigate a potential of microalgae for utilizing industrial wastewater as a cheap nutrient for their growth and oil accumulation. Wastewater was collected from the effluent ponds of agro-industrial factories (cassava and ethanol production plants). Only 2 microalgal strains were isolated and identified as Scenedesmus quadricauda and Chlorella sp.. However, only S. quadricauda was selected to cultivate in various wastewater concentrations (10%, 20%, 40%, 60%, 80% and 100%). The highest biomass obtained at 6.6×106 and 6.27×106 cells/ml when 60% wastewater was used in flask and photo-bioreactor. The cultures gave the highest lipid content at 18.58 % and 42.86% in cases of S. quadricauda and S. obliquus. In addition, under salt stress (1.0 M NaCl), S. obliquus demonstrated the highest lipid content at 50% which was much more than the case of no NaCl adding. However, the concentration of NaCl does not affect on lipid accumulation in case of S. quadricauda.