Streamwise Vorticity in the Wake of a Sliding Bubble

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Investigation of Bubble Growth during Nucleate Boiling Using CFD

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

The Study on the Stationarity of Housing Price-to-Rent and Housing Price-to-Income Ratios in China

This paper aims to examine whether a bubble is present in the housing market of China. Thus, we use the housing  price-to-income ratios and housing price-to-rent ratios of 35 cities from 1998 to 2010. The methods of the panel KSS unit root test with a  Fourier function and the SPSM process are likewise used. The panel  KSS unit root test with a Fourier function considers the problem of  non-linearity and structural changes, and the SPSM process can avoid  the stationary time series from dominating the result-generated bias.  Through a rigorous empirical study, we determine that the housing  price-to-income ratios are stationary in 34 of the 35 cities in China.  Only Xining is non-stationary. The housing price-to-rent ratios are  stationary in 32 of the 35 cities in China. Chengdu, Fuzhou, and  Zhengzhou are non-stationary. Overall, the housing bubbles are not a  serious problem in China at the time.  

Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Investigation Bubble Growth and Nucleation Rates during the Pool Boiling Heat Transfer of Distilled Water Using Population Balance Model

In this research, the changes in bubbles diameter and  number that may occur due to the change in heat flux of pure water  during pool boiling process. For this purpose, test equipment was  designed and developed to collect test data. The bubbles were graded  using Caliper Screen software. To calculate the growth and  nucleation rates of bubbles under different fluxes, population balance  model was employed. The results show that the increase in heat flux  from q=20 kw/m2 to q= 102 kw/m2 raised the growth and nucleation  rates of bubbles.  

Study of the Particle Size Effect on Bubble Rise Velocities in a Three-Phase Bubble Column

Experiments were performed in a three-phase bubble column to study variations of bubble rise velocities. The dynamic gas disengagement (DGD) technique and the fast response pressure transducers were utilized to investigate the bubble rise in the column. The superficial gas velocity of large bubbles and small bubbles, the rise velocities of larger and small bubble fractions were studied considering the effect of particle sizes. The results show that the superficial gas velocity associated with large bubbles linearly increase as superficial gas velocity increasing. Particle size has little effect on the both large and small bubble superficial gas velocities. The rise velocities of larger bubble fractions are larger than that of small bubble fractions, and it had different tendency at low and high superficial gas velocities when changing the particle sizes. The rise velocities of small bubble fractions increased and then had a decrease tendency when the particle size became greater.

Multifunctional Cell Processing with Plasmonic Nanobubbles

Cell processing techniques for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in heterogeneous cell systems. Using our novel on-demand nonstationary intracellular events instead of permanent materials, plasmonic nanobubbles, generated with a short laser pulse only in target cells, we achieved simultaneous multifunctional cell-specific processing with the rate up to 50 million cells per minute.

Nonlinear Effects in Bubbly Liquid with Shock Waves

The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.

Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling

Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N.

Investigation of Recirculation Effects on the Formation of Vapor Bubbles in Centrifugal Pump Blades

Cavitation in pumps is known as the formation of vapor bubbles due to pressure drop and collapsing these bubbles. In some conditions, it has been observed that the formation of bubbles occurs at the pressure side of centrifugal pump blades. In this study, the formation of bubbles at the pressure side of blades has been investigated. Water is used in this study as the fluid and performance curves were depicted for different flow rates in an approximately constant speed. The results show that when a centrifugal pump works in low flow rates, a secondary flow namely recirculation starts to begin. In this condition, separation of flow increases which causes vortex formation and local pressure drop and eventually the formation of vapor bubbles starts.

Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle

At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.

Pressure Induced Isenthalpic Oscillations with Condensation and Evaporation in Saturated Two-Phase Fluids

Saturated two-phase fluid flows are often subject to pressure induced oscillations. Due to compressibility the vapor bubbles act as a spring with an asymmetric non-linear characteristic. The volume of the vapor bubbles increases or decreases differently if the pressure fluctuations are compressing or expanding; consequently, compressing pressure fluctuations in a two-phase pipe flow cause less displacement in the direction of the pipe flow than expanding pressure fluctuations. The displacement depends on the ratio of liquid to vapor, the ratio of pressure fluctuations over average pressure and on the exciting frequency of the pressure fluctuations. In addition, pressure fluctuations in saturated vapor bubbles cause condensation and evaporation within the bubbles and change periodically the ratio between liquid to vapor, and influence the dynamical parameters for the oscillation. The oscillations are conforming to an isenthalpic process at constant enthalpy with no heat transfer and no exchange of work. The paper describes the governing non-linear equation for twophase fluid oscillations with condensation and evaporation, and presents steady state approximate solutions for free and for pressure induced oscillations. Resonance criteria and stability are discussed.

Terminal Velocity of a Bubble Rise in a Liquid Column

As it is known, buoyancy and drag forces rule bubble's rise velocity in a liquid column. These forces are strongly dependent on fluid properties, gravity as well as equivalent's diameter. This study reports a set of bubble rising velocity experiments in a liquid column using water or glycerol. Several records of terminal velocity were obtained. The results show that bubble's rise terminal velocity is strongly dependent on dynamic viscosity effect. The data set allowed to have some terminal velocities data interval of 8.0 ? 32.9 cm/s with Reynolds number interval 1.3 -7490. The bubble's movement was recorded with a video camera. The main goal is to present an original set data and results that will be discussed based on two-phase flow's theory. It will also discussed, the prediction of terminal velocity of a single bubble in liquid, as well as the range of its applicability. In conclusion, this study presents general expressions for the determination of the terminal velocity of isolated gas bubbles of a Reynolds number range, when the fluid proprieties are known.

Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.

Modification of Anodized Mg Alloy Surface By Pulse Condition for Biodegradable Material

Magnesium is used implant material potentially for non-toxicity to the human body. Due to the excellent bio-compatibility, Mg alloys is applied to implants avoiding removal second surgery. However, it is found commercial magnesium alloys including aluminum has low corrosion resistance, resulting subcutaneous gas bubbles and consequently the approach as permanent bio-materials. Generally, Aluminum is known to pollution substance, and it raises toxicity to nervous system. Therefore especially Mg-35Zn-3Ca alloy is prepared for new biodegradable materials in this study. And the pulsed power is used in constant-current mode of DC power kinds of anodization. Based on the aforementioned study, it examines corrosion resistance and biocompatibility by effect of current and frequency variation. The surface properties and thickness were compared using scanning electronic microscopy. Corrosion resistance was assessed via potentiodynamic polarization and the effect of oxide layer on the body was assessed cell viability. Anodized Mg-35Zn-3Ca alloy has good biocompatibility in vitro by current and frequency variation.

Current Density Effect on Nickel Electroplating Using Post Supercritical CO2 Mixed Watts Electrolyte

In this study, a nickel film with nano-crystalline grains, high hardness and smooth surface was electrodeposited using a post supercritical carbon dioxide (CO2) mixed Watts electrolyte. Although the hardness was not as high as its Sc-CO2 counterpart, the thin coating contained significantly less number of nano-sized pinholes. By measuring the escape concentration of the dissolved CO2 in post Sc-CO2 mixed electrolyte with the elapsed time, it was believed that the residue of dissolved CO2 bubbles should closely relate to the improvement in hardness and surface roughness over its conventional plating counterpart. Therefore, shortening the duration of electroplating with the raise of current density up to 0.5 A/cm2 could effectively retain more post Sc-CO2 mixing effect. This study not only confirms the roles of dissolved CO2 bubbles in electrolyte but also provides a potential process to overcome most issues associated with the cost in building high-pressure chamber for large size products and continuous plating using supercritical method.