A Study of Relationship between Mountaineering Participation Motivation and Risk Perception

The main purpose of this study is to analyze climbers involved in motivation and risk perception and analysis of the predictive ability of the risk perception "mountaineering" involved in motivation. This study used questionnaires, to have to climb the 3000m high mountain in Taiwan climbers object to carry out an investigation in order to non-random sampling, a total of 231 valid questionnaires were. After statistical analysis, the study found that: 1. Climbers the highest climbers involved in motivation "to enjoy the natural beauty of the fun. 2 climbers for climbers "risk perception" the highest: the natural environment of risk. 3. Climbers “seeking adventure stimulate", “competence achievement" motivation highly predictive of risk perception. Based on these findings, this study not only practices the recommendations of the outdoor leisure industry, and also related research proposals for future researchers.

The Induced Generalized Hybrid Averaging Operator and its Application in Financial Decision Making

We present the induced generalized hybrid averaging (IGHA) operator. It is a new aggregation operator that generalizes the hybrid averaging (HA) by using generalized means and order inducing variables. With this formulation, we get a wide range of mean operators such as the induced HA (IHA), the induced hybrid quadratic averaging (IHQA), the HA, etc. The ordered weighted averaging (OWA) operator and the weighted average (WA) are included as special cases of the HA operator. Therefore, with this generalization we can obtain a wide range of aggregation operators such as the induced generalized OWA (IGOWA), the generalized OWA (GOWA), etc. We further generalize the IGHA operator by using quasi-arithmetic means. Then, we get the Quasi-IHA operator. Finally, we also develop an illustrative example of the new approach in a financial decision making problem. The main advantage of the IGHA is that it gives a more complete view of the decision problem to the decision maker because it considers a wide range of situations depending on the operator used.

Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania

The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.

A New Approach In Protein Folding Studies Revealed The Potential Site For Nucleation Center

A new approach to predict the 3D structures of proteins by combining the knowledge-based method and Molecular Dynamics Simulation is presented on the chicken villin headpiece subdomain (HP-36). Comparative modeling is employed as the knowledge-based method to predict the core region (Ala9-Asn28) of the protein while the remaining residues are built as extended regions (Met1-Lys8; Leu29-Phe36) which then further refined using Molecular Dynamics Simulation for 120 ns. Since the core region is built based on a high sequence identity to the template (65%) resulting in RMSD of 1.39 Å from the native, it is believed that this well-developed core region can act as a 'nucleation center' for subsequent rapid downhill folding. Results also demonstrate that the formation of the non-native contact which tends to hamper folding rate can be avoided. The best 3D model that exhibits most of the native characteristics is identified using clustering method which then further ranked based on the conformational free energies. It is found that the backbone RMSD of the best model compared to the NMR-MDavg is 1.01 Å and 3.53 Å, for the core region and the complete protein, respectively. In addition to this, the conformational free energy of the best model is lower by 5.85 kcal/mol as compared to the NMR-MDavg. This structure prediction protocol is shown to be effective in predicting the 3D structure of small globular protein with a considerable accuracy in much shorter time compared to the conventional Molecular Dynamics simulation alone.

A Performance Comparison of Golay and Reed-Muller Coded OFDM Signal for Peak-to-Average Power Ratio Reduction

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication systems. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. A major drawback of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal which can significantly impact the performance of the power amplifier. In this paper we have compared the PAPR reduction performance of Golay and Reed-Muller coded OFDM signal. From our simulation it has been found that the PAPR reduction performance of Golay coded OFDM is better than the Reed-Muller coded OFDM signal. Moreover, for the optimum PAPR reduction performance, code configuration for Golay and Reed-Muller codes has been identified.

Degradability Studies of Photodegradable Plastic Film

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples were tested for tensile strength to determine the degradation effects. The tensile strength of directly exposed sunlight samples and shaded area showed up to 50% and 25% degradation respectively. However, similar reduction of Young’s modulus for all samples was found for both exposures. Structural investigations were done using FTIR to detect deformation. The natural additives that were used in the studies were all natural and environmental friendly

Measuring Risk Levels and Efficacy of Risk Management Strategies in Vietnamese Catfish Farming

Although the Vietnamese catfish farming has grown at very high rates in recent years, the industry has also faced many problems affecting its sustainability. This paper studies the perceptions of catfish farmers regarding risk and risk management strategies in their production activities. Specifically, the study aims to measure the consequences, likelihoods, and levels of risks as well as the efficacy of risk management in Vietnamese catfish farming. Data for the study were collected through a sample of 261 catfish farmers in the Mekong Delta, Vietnam using a questionnaire survey in 2008. Results show that, in general, price and production risks were perceived as the most important risks. Farm management and technical measures were perceived more effective than other kinds of risk management strategies in risk reduction. Although price risks were rated as important risks, price risk management strategies were not perceived as important measures for risk mitigation. The results of the study are discussed to provide implications for various industry stakeholders, including policy makers, processors, advisors, and developers of new risk management strategies.

Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion

The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.

A Study of Flow and Sedimentation at the Basins of Khoozestan Province Rivers: A Case Study of Boneh Basht Pumping Station

The present paper is a case study about exploitation of Kheir Abad river (Khoozestan, Iran) water resources and the problems caused by river sediments around the pumping stations. The weak points and strong points of Boneh Basht pumping station have been studied by experienced experts, work teams, and consulting engineers and technical and executive solutions have been suggested. Therefore, the suggestions of this article are based on the performed studies and are proposed in order to evaluate the logical solutions. Rather complicated processes resulting from the interaction of water flows and sediments observed at Boneh Basht pumping station occur at other pumping stations in almost the same way. Therefore, Boneh Basht pumping station can be selected as a sample (pilot) and up-to-date theories and experiences can be applied to this station and the results can be offered to other stations.

An Experimental Study of a Self-Supervised Classifier Ensemble

Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.

A 1.5V,100MS/s,12-bit Current-Mode CMOSS ample-and-Hold Circuit

A high-linearity and high-speed current-mode sampleand- hold circuit is designed and simulated using a 0.25μm CMOS technology. This circuit design is based on low voltage and it utilizes a fully differential circuit. Due to the use of only two switches the switch related noise has been reduced. Signal - dependent -error is completely eliminated by a new zero voltage switching technique. The circuit has a linearity error equal to ±0.05μa, i.e. 12-bit accuracy with a ±160 μa differential output - input signal frequency of 5MHZ, and sampling frequency of 100 MHZ. Third harmonic is equal to –78dB.

Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process

The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.

Design a Low Voltage- Low Offset Class AB Op-Amp

A new design approach for three-stage operational amplifiers (op-amps) is proposed. It allows to actually implement a symmetrical push-pull class-AB amplifier output stage for wellestablished three-stage amplifiers using a feedforward transconductance stage. Compared with the conventional design practice, the proposed approach leads to a significant improvement of the symmetry between the positive and the negative op-amp step response, resulting in similar values of the positive/negative settling time. The new approach proves to be very useful in order to fully exploit the potentiality allowed by the op-amp in terms of speed performances. Design examples in a commercial 0.35-μm CMOS prove the effectiveness of theproposed strategy.

Influence of Service and Product Quality towards Customer Satisfaction: A Case Study at the Staff Cafeteria in the Hotel Industry

The main objectives of this study were to identify attributes that influence customer satisfaction and determine their relationships with customer satisfaction. The variables included in this research are place/ambience, food quality and service quality as independent variables and customer satisfaction as the dependent variable. A survey questionnaire which consisted of three parts to measure demographic factors, independent variables, and dependent variables was constructed based on items determined by past research. 149 respondents from one of the well known hotel in Kuala Lumpur, MALAYSIA were selected as a sample. Psychometric testing was conducted to determine the reliability and validity of the questionnaire. From the findings, there were positive significant relationship between place/ambience (r=0.563**, p=0.000) and service quality (r=0.544**, p=0.000) with customer satisfaction. However, although relationship between food quality and customer satisfaction was significant, it was in the negative direction (r=- 0.268**, p=0.001). New findings were discovered after conducting this research and previous research findings were strengthened by the results of this research. Future researchers could concentrate on determining attributes that influence customer satisfaction when cost/price is not a factor and reasons for place/ambience is currently becoming the leading factor in determining customer satisfaction.

Recent Advances on Computational Proteomics

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Mechanism of Damping in Welded Structures using Finite Element Approach

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

The Baer Radical of Rings in Term of Prime and Semiprime Generalized Bi-ideals

Using the idea of prime and semiprime bi-ideals of rings, the concept of prime and semiprime generalized bi-ideals of rings is introduced, which is an extension of the concept of prime and semiprime bi-ideals of rings and some interesting characterizations of prime and semiprime generalized bi-ideals are obtained. Also, we give the relationship between the Baer radical and prime and semiprime generalized bi-ideals of rings in the same way as of biideals of rings which was studied by Roux.

New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.