Abstract: In recent years, new techniques for solving complex
problems in engineering are proposed. One of these techniques is
JPSO algorithm. With innovative changes in the nature of the jump
algorithm JPSO, it is possible to construct a graph-based solution
with a new algorithm called G-JPSO. In this paper, a new algorithm
to solve the optimal control problem Fletcher-Powell and optimal
control of pumps in water distribution network was evaluated.
Optimal control of pumps comprise of optimum timetable operation
(status on and off) for each of the pumps at the desired time interval.
Maximum number of status on and off for each pumps imposed to the
objective function as another constraint. To determine the optimal
operation of pumps, a model-based optimization-simulation
algorithm was developed based on G-JPSO and JPSO algorithms.
The proposed algorithm results were compared well with the ant
colony algorithm, genetic and JPSO results. This shows the
robustness of proposed algorithm in finding near optimum solutions
with reasonable computational cost.
Abstract: Carefully scheduling the operations of pumps can be
resulted to significant energy savings. Schedules can be defined
either implicit, in terms of other elements of the network such as tank
levels, or explicit by specifying the time during which each pump is
on/off. In this study, two new explicit representations based on timecontrolled
triggers were analyzed, where the maximum number of
pump switches was established beforehand, and the schedule may
contain fewer switches than the maximum. The optimal operation of
pumping stations was determined using a Jumping Particle Swarm
Optimization (JPSO) algorithm to achieve the minimum energy cost.
The model integrates JPSO optimizer and EPANET hydraulic
network solver. The optimal pump operation schedule of VanZyl
water distribution system was determined using the proposed model
and compared with those from Genetic and Ant Colony algorithms.
The results indicate that the proposed model utilizing the JPSO
algorithm is a versatile management model for the operation of realworld
water distribution system.
Abstract: The present paper is a case study about exploitation of
Kheir Abad river (Khoozestan, Iran) water resources and the
problems caused by river sediments around the pumping stations.
The weak points and strong points of Boneh Basht pumping station
have been studied by experienced experts, work teams, and
consulting engineers and technical and executive solutions have been
suggested. Therefore, the suggestions of this article are based on the
performed studies and are proposed in order to evaluate the logical
solutions.
Rather complicated processes resulting from the interaction of
water flows and sediments observed at Boneh Basht pumping station
occur at other pumping stations in almost the same way. Therefore,
Boneh Basht pumping station can be selected as a sample (pilot) and
up-to-date theories and experiences can be applied to this station and
the results can be offered to other stations.
Abstract: Pressure waves and Water Hammer occur in a
pumping system when valves are closed or opened suddenly or in
the case of sudden failure of pumps. Determination of maximum
water hammer is considered one of the most important technical
and economical items of which engineers and designers of
pumping stations and conveyance pipelines should take care.
Hammer Software is a recent application used to simulate water
hammer. The present study focuses on determining significance of
each input parameter of the application relative to the maximum
amount of water hammer estimated by the software. The study
determines estimated maximum water hammer variations due to
variations of input parameters including water temperature, pipe
type, thickness and diameter, electromotor rpm and power, and
moment of inertia of electromotor and pump. In our study,
Kuhrang Pumping Station was modeled using WaterGEMS
Software. The pumping station is characterized by total discharge
of 200 liters per second, dynamic height of 194 meters and 1.5
kilometers of steel conveyance pipeline and transports water to
Cheshme Morvarid for farmland irrigation. The model was run in
steady hydraulic condition and transferred to Hammer Software.
Then, the model was run in several unsteady hydraulic conditions
and sensitivity of maximum water hammer to each input parameter
was calculated. It is shown that parameters to which maximum
water hammer is most sensitive are moment of inertia of pump and
electromotor, diameter, type and thickness of pipe and water
temperature, respectively.
Abstract: Reducing river sediments through path correction and
preservation of river walls leads to considerable reduction of
sedimentation at the pumping stations. Path correction and
preservation of walls is not limited to one particular method but,
depending on various conditions, a combination of several methods
can be employed. In this article, we try to review and evaluate
methods for preservation of river banks in order to reduce sediments.
Abstract: This research was conducted in the Lower Ping River
Basin downstream of the Bhumibol Dam and the Lower Wang River
Basin in Tak Province, Thailand. Most of the tributary streams of the
Ping can be considered as ungauged catchments. There are 10-
pumping station installation at both river banks of the Ping in Tak
Province. Recently, most of them could not fully operate due to the
water amount in the river below the level that would be pumping,
even though included water from the natural river and released flow
from the Bhumibol Dam. The aim of this research was to increase the
performance of those pumping stations using weir projects in the
Ping. Therefore, the river analysis system model (HEC-RAS) was
applied to study the hydraulic behavior of water surface profiles in
the Ping River with both cases of existing conditions and proposed
weirs during the violent flood in 2011 and severe drought in 2013.
Moreover, the hydrologic modeling system (HMS) was applied to
simulate lateral streamflow hydrograph from ungauged catchments of
the Ping. The results of HEC-RAS model calibration with existing
conditions in 2011 showed best trial roughness coefficient for the
main channel of 0.026. The simulated water surface levels fitted to
observation data with R2 of 0.8175. The model was applied to 3
proposed cascade weirs with 2.35 m in height and found surcharge
water level only 0.27 m higher than the existing condition in 2011.
Moreover, those weirs could maintain river water levels and increase
of those pumping performances during less river flow in 2013.
Abstract: Rolling element bearings are widely used in industry,
especially where high load capacity is required. The diagnosis of
their conditions is essential matter for downtime reduction and saving
cost of maintenance. Therefore, an intensive analysis of frequency
spectrum of their faults must be carried out in order to determine the
main reason of the fault. This paper focus on a beating phenomena
observed in the waveform (time domain) of a cylindrical rolling
element bearing. The beating frequencies were not related to any
sources nearby the machine nor any other malfunctions (unbalance,
misalignment ...etc). More investigation on the spike energy and the
frequency spectrum indicated a problem with races of the bearing.
Multi-harmonics of the fundamental defects frequencies were
observed. Two of them were close to each other in magnitude those
were the source of the beating phenomena.
Abstract: Power Factor (PF) is one of the most important parameters in the electrical systems, especially in the water pumping station. The low power factor value of the water pumping stations causes penalty for the electrical bill. There are many methods use for power factor improvement. Each one of them uses a capacitor on the electrical power network. The position of the capacitors is varied depends on many factors such as; voltage level and capacitors rating. Adding capacitors on the motor terminals increase the supply power factor from 0.8 to more than 0.9 but these capacitors cause some problems for the electrical grid network, such as increasing the harmonic contents of the grid line voltage. In this paper the effects of using capacitors in the water pumping stations to improve the power factor value on the harmonic contents of the electrical grid network are studied. One of large water pumping stations in Kafr El-Shikh Governorate in Egypt was used, as a case study. The effect of capacitors on the line voltage harmonic contents is measured. The station uses capacitors to improve the PF values at the 1 lkv grid network. The power supply harmonics values are measured by a power quality analyzer at different loading conditions. The results showed that; the capacitors improved the power factor value of the feeder and its value increased than 0.9. But the THD values are increased by adding these capacitors. The harmonic analysis showed that; the 13th, 17th, and 19th harmonics orders are increased also by adding the capacitors.
Abstract: Food and fibre production in arid and semi-arid regions has emerged as one of the major challenges for various socio-economic and political reasons such as the food security and self-sufficiency. Productive use of the renewable water resources has risen on top ofthe decision-making agenda. For this reason, efficient operation and maintenance of modern irrigation and drainage schemes become part and parcel and indispensible reality in agricultural policy making arena. The aim of this paper is to investigate the complexity of operating and maintaining such schemes, mainly focussing on challenges which enhance and opportunities that impedsustainable food and fibre production. The methodology involved using secondary data complemented byroutine observations and stakeholders views on issues that influence the O&M in the Dez command area. The SPSS program was used as an analytical framework for data analysis and interpretation.Results indicate poor application efficiency in most croplands, much of which is attributed to deficient operation of conveyance and distribution canals. These in turn, are reportedly linked to inadequate maintenance of the pumping stations and hydraulic structures like turnouts,flumes and other control systems particularly in the secondary and tertiary canals. Results show that the aforementioned deficiencies have been the major impediment to establishing regular flow toward the farm gates which subsequently undermine application efficiency and tillage operationsat farm level. Results further show that accumulative impact of such deficiencies has been the major causes of poorcrop yield and quality that deem production system in these croplands uneconomic. Results further show that the present state might undermine the sustainability of agricultural system in the command area. The overall conclusion being that present water management is unlikely to be responsive to challenges that the sector faces. And in the absence of coherent measures to shift the status quo situation in favour of more productive resource use, it would be hard to fulfil the objectives of the National Economic and Socio-cultural Development Plans.
Abstract: Air emissions from waste treatment plants often
consist of a combination of Volatile Organic Compounds (VOCs)
and odors. Hydrogen sulfide is one of the major odorous gases
present in the waste emissions coming from municipal wastewater
treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic
and flammable. Exposure to lower concentrations can result in eye
irritation, a sore throat and cough, shortness of breath, and fluid in
the lungs. Biofiltration has become a widely accepted technology for
treating air streams containing H2S. When compared with other nonbiological
technologies, biofilter is more cost-effective for treating large
volumes of air containing low concentrations of biodegradable compounds.
Optimization of biofilter media is essential for many reasons such as:
providing a higher surface area for biofilm growth, low pressure drop,
physical stability, and good moisture retention. In this work, a novel
biofilter media is developed and tested at a pumping station of a
municipality located in the United Arab Emirates (UAE). The
media is found to be very effective (>99%) in removing H2S
concentrations that are expected in pumping stations under steady
state and shock loading conditions.
Abstract: Sediment formation and its transport along the river course is considered as important hydraulic consideration in river engineering. Their impact on the morphology of rivers on one hand and important considerations of which in the design and construction of the hydraulic structures on the other has attracted the attention of experts in arid and semi-arid regions. Under certain conditions where the momentum energy of the flow stream reaches a specific rate, the sediment materials start to be transported with the flow. This can usually be analyzed in two different categories of suspended and bed load materials. Sedimentation phenomenon along the waterways and the conveyance of vast volume of materials into the canal networks can potentially influence water abstraction in the intake structures. This can pose a serious threat to operational sustainability and water delivery performance in the canal networks. The situation is serious where ineffective watershed management (poor vegetation cover in the water basin) is the underlying cause of soil erosion which feeds the materials into the waterways that intern would necessitate comprehensive study. The present paper aims to present an analytical investigation of the sediment process in the waterways on one hand and estimation of the sediment load transport into the lined canals using the SHARC software on the other. For this reason, the paper focuses on the comparative analysis of the hydraulic behaviors of the Sabilli main canal that feeds the pumping station with that of the Western canal in the Greater Dezful region to identify effective factors in sedimentation and ways of mitigating their impact on water abstraction in the canal systems. The method involved use of observational data available in the Dezful Dastmashoon hydrometric station along a 6 km waterway of the Sabilli main canal using the SHARC software to estimate the suspended load concentration and bed load materials. Results showed the transport of a significant volume of sediment loads from the waterways into the canal system which is assumed to have arisen from the absence of stilling basin on one hand and the gravity flow on the other has caused serious challenges. This is contrary to what occurs in the Sabilli canal, where the design feature which incorporates a settling basin just before the pumping station is the major cause of reduced sediment load transport into the canal system.Results showed that modification of the present design features by constructing a settling basin just upstream of the western intake structure can considerably reduce the entry of sediment materials into the canal system. Not only this can result in the sustainability of the hydraulic structures but can also improve operational performance of water conveyance and distribution system, all of which are the pre-requisite to secure reliable and equitable water delivery regime for the command area.
Abstract: Establishing pumping stations is one of the most common ways of providing water from rivers. There are many issues involved in the design and operation of pumping stations most important of which is the problem of sedimentation. One of the significant issues which must be taken into consideration in designing pumping stations is the operation method and technical matters related to it. Safety and convenience of operation is one of the issues that must be always considered by the designer. Some of the major issues in making decisions regarding the type of design for the station are geographical condition, the location of the station and availability of experts in maintenance and operation of the station. Dimensions of the station must allow free movement for checking and operating pumps after installation of pumps and plumbing system.