Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile

Flash Floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Distributed Manufacturing (DM) - Smart Units and Collaborative Processes

Applications of the Hausdorff space and its mappings into tangent spaces are outlined, including their fractal dimensions and self-similarities. The paper details this theory set up and further describes virtualizations and atomization of manufacturing processes. It demonstrates novel concurrency principles that will guide manufacturing processes and resources configurations. Moreover, varying levels of details may be produced by up folding and breaking down of newly introduced generic models. This choice of layered generic models for units and systems aspects along specific aspects allows research work in parallel to other disciplines with the same focus on all levels of detail. More credit and easier access are granted to outside disciplines for enriching manufacturing grounds. Specific mappings and the layers give hints for chances for interdisciplinary outcomes and may highlight more details for interoperability standards, as already worked on the international level. The new rules are described, which require additional properties concerning all involved entities for defining distributed decision cycles, again on the base of self-similarity. All properties are further detailed and assigned to a maturity scale, eventually displaying the smartness maturity of a total shopfloor or a factory. The paper contributes to the intensive ongoing discussion in the field of intelligent distributed manufacturing and promotes solid concepts for implementations of Cyber Physical Systems and the Internet of Things into manufacturing industry, like industry 4.0, as discussed in German-speaking countries.

Optimum Design of Attenuator of Spun-Bond Production System

Nanofibers are effective materials which have frequently been investigated to produce high quality air filters. As an environmental approach our aim is to achieve nanofibers by melting. In spun-bond systems extruder, spin-pump, nozzle package and attenuator are used. Molten polymer which flows from extruder is made steady by spin-pump. Regular melt passes through nozzle holes and forms fibers under high pressure. The fibers pulled from nozzle are shrunk to micron size by an attenuator; after solidification, they are collected on a conveyor. In this research different designs of attenuator system have been studied; and also CFD analysis has been done on these different designs. Afterwards, one of these designs tested and finally some optimizations have been done to reduce pressure loss and increase air velocity.

CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable range of multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculation of pressure losses in the real lungs is time consuming and inefficient process due to its complexity and diversity. For these calculations is necessary to slightly simplify the geometry of lungs (same cross-section over the length of individual generation) or use one of the idealized models of lungs (Horsfield, Weibel). The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli and continuity equations. The aim of the article is to analyse the accuracy of the analytical method and its possibility of use for the calculation of pressure losses in lower generations, which is difficult to solve by numerical method due to the small geometry.

The Status of BIM Adoption on Six Continents

This paper reports the worldwide status of building information modeling (BIM) adoption from the perspectives of the engagement level, the Hype Cycle model, the technology diffusion model, and BIM services. An online survey was distributed, and 156 experts from six continents responded. Overall, North America was the most advanced continent, followed by Oceania and Europe. Countries in Asia perceived their phase mainly as slope of enlightenment (mature) in the Hype Cycle model. In the technology diffusion model, the main BIM-users worldwide were “early majority” (third phase), but those in the Middle East/Africa and South America were “early adopters” (second phase). In addition, the more advanced the country, the more number of BIM services employed in general. In summary, North America, Europe, Oceania, and Asia were advancing rapidly toward the mature stage of BIM, whereas the Middle East/Africa and South America were still in the early phase. The simple indexes used in this study may be used to track the worldwide status of BIM adoption in long-term surveys.

The Antecedents of Facebook Check in Adoption Intention: The Perspective of Social Influence

Recently, the competition between websites becomes intense. How to make users “adopt” their websites is an issue of urgent importance for online communities companies. Social procedures (such as social influence) can possibly explain how and why users’ technologies usage behaviors affect other people to use the technologies. This study proposes two types of social influences on the initial usage of Facebook Check In-friends and group members. Besides, this study combines social influences theory and social network theory to explore the factors influencing initial usage of Facebook Check In. This study indicates that Facebook friends’ previous usage of Facebook Check In and Facebook group members’ previous usage of Facebook Check In will positively influence focal actors’ Facebook Check In adoption intention, and network centrality will moderate the relationships among Facebook friends’ previous usage of Facebook Check In, Facebook group members’ previous usage of Facebook Check In and focal actors’ Facebook Check In adoption intention. The article concludes with contributions to academic research and practice.

A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Atmospheric Fluid Bed Gasification of Different Biomass Fuels

This paper shortly describes various types of biomass and a growing number of facilities utilizing the biomass in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequently used types of biomass and results of their gasification testing. Sixteen most used "Czech" woody plants and grasses were selected; raw, element and biochemical analyses were performed and basic calorimetric values, ash composition, and ash characteristic temperatures were identified. Later, each biofuel was tested in a fluidized bed gasifier. The essential part of this paper provides results of the gasification of selected biomass types. Operating conditions are described in detail with a focus on individual fuels properties. Gas composition and impurities content are also identified. In terms of operating conditions and gas quality, the essential difference occurred mainly between woody plants and grasses. The woody plants were evaluated as more suitable fuels for fluidized bed gasifiers. Testing results significantly help with a decision-making process regarding suitability of energy plants for growing and with a selection of optimal biomass-treatment technology.

New Hybrid Method to Model Extreme Rainfalls

Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose, in the present paper, a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.

The Strategies for Teaching Digital Art in the Classroom as a Way of Enhancing Pupils’ Artistic Creativity

Teaching art by digital means is a big challenge for the majority of teachers of art and design in primary schools, yet it allows relationships between art, technology and creativity to be clearly identified. The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom to improve creative ability in pupils aged between nine and eleven years. It also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning to draw by using an e-drawing package, and for teachers who are interested in teaching modern digital art in order to improve children’s creativity. By illustrating the strategy of teaching art through technology, this model may also help education providers to make suitable choices about which technological approaches are most effective in enhancing students’ creative ability, and which digital art tools can benefit children by developing their technical skills. It is also expected that use of this model will help to develop skills of social interaction, which may in turn improve intellectual ability.

Some Yield Parameters of Wheat Genotypes

To study the effect of the cross direction in bead wheat, three hybrid combinations (Babyle 113, Iratome), (Sawa, Tamose2) and (Al Hashymya, Al Iraq) were tested for plant height, spike and awn length, number of grains per spike, 1000-grain weight, number of tillers/m and grain yield. The results revealed that the direction of the crosses significantly effect on the number of grains/spike, number of tillers/m and grain yields. Grain yield was positively and significantly correlated with 1000-grain weight, number of grains per spike and tillers. Depend on the results of heritability and genetic advance it was suggested that 1000-grain weight, number of grains per spike and tillers should be given emphasis for future wheat yield improvement programs.

The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

IT/IS Organisation Design in the Digital Age – A Literature Review

Information technology and information systems are currently at a tipping point. The digital age fundamentally transforms a large number of industries in the ways they work. Lines between business and technology blur. Researchers have acknowledged that this is the time in which the IT/IS organisation needs to re-strategize itself. In this paper, the author provides a structured review of the IS and organisation design literature addressing the question of how the digital age changes the design categories of an IT/IS organisation design. The findings show that most papers just analyse single aspects of either IT/IS relevant information or generic organisation design elements but miss a holistic ‘big-picture’ onto an IT/IS organisation design. This paper creates a holistic IT/IS organisation design framework bringing together the IS research strand, the digital strand and the generic organisation design strand. The research identified four IT/IS organisation design categories (strategy, structure, processes and people) and discusses the importance of two additional categories (sourcing and governance). The authors findings point to a first anchor point from which further research needs to be conducted to develop a holistic IT/IS organisation design framework.

Collaborative Team Work in Higher Education: A Case Study

If teamwork is the key to organizational learning, productivity and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.

Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

This paper reports the numerical simulation of doublediffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

The Antimicrobial Activity of the Essential Oil of Salvia officinalis Harvested in Boumerdes

The Algeria by its location offers a rich and diverse vegetation. A large number of aromatic and medicinal plants grow spontaneously. The interest in these plants has continued to grow in recent years. Their particular properties due to the essential oil fraction can be utilized to treat microbial infections. To this end, and in the context of the valuation of the Algerian flora, we became interested in the species of the family Lamiaceae which is one of the most used as a global source of spices. The plant on which we have based our choice is a species of sage "Salvia officinalis" from the Isser localized region within the province of Boumerdes. This work focuses on the study of the antimicrobial activity of essential oil extracted from the leaves of Salvia officinalis. The extraction is carried out by essential oil hydrodistillation and reveals a yield of 1.06℅. The study of the antimicrobial activity of the essential oil by the method of at aromatogramme shown that Gram positive bacteria are most susceptible (Staphylococcus aureus and Bacillus subtilis) with a strong inhibition of growth. The yeast Candida albicans fungus Aspergillus niger and have shown moderately sensitive.

A Long Tail Study of eWOM Communities

Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels.

FEM Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli

Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in fourpoint bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.