Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation

Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.

Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator

Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.

Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-cut Papaya (Carica papaya)

Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss.

Thermo-Mechanical Treatments of Cu-Ti Alloys

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined, and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. The metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most efficient hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as long grain boundaries were responsible for the overaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well known that plate-like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature, a classic Widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Networking the Biggest Challenge in Hybrid Cloud Deployment

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation

In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the Computational Fluid Dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in Stratified Air Distribution (STRAD) system is used in this study. The results show that 47.4% energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.

Plasma Lipid Profiles and Atherogenic Indices of Rats Fed Raw and Processed Jack Fruit (Artocarpus heterophyllus) Seeds Diets at Different Concentrations

The effect of processing on plasma lipid profile and atherogenic indices of rats fed Artocarpus heterophyllus seed diets at different concentrations were investigated. Fifty five rats were used for this study, they were divided into eleven groups of five rats each (one control group and ten test groups), the test groups were fed raw, boiled, roasted, fermented and soaked diets at 10% and 40% concentrations. The study lasted for thirty five days. The diets led to significant decrease (p

Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness

Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. Multitudes of methods have been investigated to reduce DOMS. One of the valuable methods to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric with maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three equal groups: Group A (first study group): 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as a prophylactic exercise. Group B (second study group): 20 subjects received maximal isometric contraction on nondominant elbow flexors as a prophylactic exercise. Group C (control group): 20 subjects did not receive any prophylactic exercises. Maximal isometric peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after, and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction produced a greater protective effect against muscle damage induced by maximal eccentric exercise performed 2 days later.

Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Interstitial free steels possess better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible Gross Vehicle Weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased 29% between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32°C in 1984 and 27-33°C in 2014. Minimum temperature of agricultural lands was increased 3°C and reached to 23°C. In contrast, maximum temperature of A class decreased to 41°C from 44°C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2°C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites

It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.

Turkey in Minds: Cognitive and Social Representations of "East" and "West"

Perception, evaluation and representation of the environment have been the subject of many disciplines including psychology, geography and architecture. In environmental and social psychology literature there are several evidences which suggest that cognitive representations about a place consisted of not only geographic items but also social and cultural. Mental representations of residence area or a country are influenced and determined by social-demographics, the physical and social context. Thus, all mental representations of a given place are also social representations. Cognitive maps are the main and common instruments that are used to identify spatial images and the difference between physical and subjective environments. The aim of the current study is investigating the mental and social representations of Turkey in university students’ minds. Data was collected from 249 university students from different departments (i.e. psychology, geography, history, tourism departments) of Ege University. Participants were requested to reflect Turkey in their mind onto the paper drawing sketch maps. According to the results, cognitive maps showed geographic aspects of Turkey as well as the context of symbolic, cultural and political reality of Turkey. That is to say, these maps had many symbolic and verbal items related to critics on social and cultural problems, ongoing ethnic and political conflicts, and actual political agenda of Turkey. Additionally, one of main differentiations in these representations appeared in terms of the East and West side of the Turkey, and the representations of the East and West was varied correspondingly participants’ cultural background, their ethnic values, and where they have born. The results of the study were discussed in environmental and social psychological perspective considering cultural and social values of Turkey and current political circumstances of the country.

The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper, first of all, investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. Volume proportions of 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total rate of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower water absorption capacities compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter

Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).

Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish

Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65mg/l of Pb, 0.85mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum.

Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ- Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5 and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ- Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.