Extracting Therapeutic Grade Essential Oils from the Lamiaceae Plant Family in the United Arab Emirates (UAE): Highlights on Great Possibilities and Sever Difficulties

Essential oils are expensive phytochemicals produced and extracted from specific species belonging to particular families in the plant kingdom. In the United Arab Emirates country (UAE), is located in the arid region of the world, nine species, from the Lamiaceae family, having the capability to produce therapeutic grade essential oils. These species include; Mentha spicata, Ocimum forskolei, Salvia macrosiphon, Salvia aegyptiaca, Salvia macilenta, Salvia spinosa, Teucrium polium, Teucrium stocksianum and Zataria multiflora. Although, such potential species are indigenous to the UAE, however, there are almost no studies available to investigate the chemical composition and the quality of the extracted essential oils under the UAE climatological conditions. Therefore, great attention has to be given to such valuable natural resources, through conducting highly supported research projects, tailored to the UAE conditions, and investigating different extraction techniques, including the application of the latest available technologies, such as superficial fluid CO2. This is crucially needed; in order to accomplish the greatest possibilities in the medicinal field, specifically in the discovery of new therapeutic chemotypes, as well as, to achieve the sustainability of this natural resource in the country.

Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Statistical Optimization of Medium Components for Biomass Production of Chlorella pyrenoidosa under Autotrophic Conditions and Evaluation of Its Biochemical Composition under Stress Conditions

The aim of the present work was to statistically design an autotrophic medium for maximum biomass production by Chlorella pyrenoidosa using response surface methodology. After evaluating one factor at a time approach, K2HPO4, KNO3, MgSO4.7H2O and NaHCO3 were preferred over the other components of the fog’s medium as most critical autotrophic medium components. The study showed that the maximum biomass yield was achieved while the concentrations of MgSO4.7H2O, K2HPO4, KNO3 and NaHCO3 were 0.409 g/L, 0.24 g/L, 1.033 g/L, and 3.265 g/L, respectively. The study reported that the biomass productivity of C. pyrenoidosa improved from 0.14 g/L in defined fog’s medium to 1.40 g/L in modified fog’s medium resulting 10 fold increase. The biochemical composition biosynthesis of C. pyrenoidosa was altered using nitrogen limiting stress bringing about 5.23 fold increase in lipid content than control (cell without stress), as analyzed by FTIR integration method.

Perceptions of Climate Change Risk to Forest Ecosystems: A Case Study of Patale Community Forestry User Group, Nepal

The purpose of this study was to investigate perceptions of climate change risk to forest ecosystems and forestbased communities as well as perceived effectiveness of adaptation strategies for climate change as well as challenges for adaptation. Data was gathered using a pre-tested semi-structured questionnaire. Simple random selection technique was applied. For the majority of issues, the responses were obtained on multi-point likert scales, and the scores provided were, in turn, used to estimate the means and other useful estimates. A composite knowledge index developed using correct responses to a set of self-rated statements were used to evaluate the issues. The mean of the knowledge index was 0.64. Also all respondents recorded values of the knowledge index above 0.25. Increase forest fire was perceived by respondents as the greatest risk to forest eco-system. Decrease access to water supplies was perceived as the greatest risk to livelihoods of forest based communities. The most effective adaptation strategy relevant to climate change risks to forest eco-systems and forest based communities livelihoods in Kathmandu valley in Nepal as perceived by the respondents was reforestation and afforestation. As well, lack of public awareness was perceived as the major limitation for climate change adaptation. However, perceived risks as well as effective adaptation strategies showed an inconsistent association with knowledge indicators and social-cultural variables. The results provide useful information to any party who involve with climate change issues in Nepal, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.

Study of Parameters Affecting the Electrostatic Attractions Force

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Sri Lanka – Middle East Labour Migration Corridor: Trends, Patterns and Structural Changes

Objective of this study is to explore the recent trends, patterns and the structural changes in the labour migration from Sri Lanka to Middle East countries and to discuss the possible impacts of those changes on the remittance flow. Study uses secondary data published by Sri Lanka Bureau of Foreign Employment and Central Bank. Thematic analysis of the secondary data revealed that the migration for labour has increased rapidly during past decades. Parallel with that the gender and the skill composition of the migration flow has been changing. Similarly, the destinations for male migration have changed over the period. These show positive implications on the international remittance receipts to the country.

Operation Strategies of Residential Micro Combined Heat and Power Technologies

Reduction of CO2 emissions has become a priority for several countries due to increasing concerns about global warming and climate change, especially in the developed countries. Residential sector is considered one of the most important sectors for considerable reduction of CO2 emissions since it represents a significant amount of the total consumed energy in those countries. A significant CO2 reduction cannot be achieved unless some initiatives have been adopted in the policy of these countries. Introducing micro combined heat and power (!CHP) systems into residential energy systems is one of these initiatives, since such a technology offers several advantages. Moreover, !CHP technology has the opportunity to be operated not only by natural gas but it could also be operated by renewable fuels. However, this technology can be operated by different operation strategies. Each strategy has some advantages and disadvantages. This paper provides a review of different operation strategies of such a technology used for residential energy systems, especially for single dwellings. The review summarizes key points that outline the trend of previous research carried out in this field.

Evaluation of Biomass Introduction Methods in Coal Co-Gasification

Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.

The Antibacterial and Anticancer Activity of Marine Actinomycete Strain HP411 Isolated in the Northern Coast of Vietnam

Since the marine environmental conditions are extremely different from the other ones, marine actinomycetes might produce novel bioactive compounds. Therefore, actinomycete strains were screened from marine water and sediment samples collected from the coastal areas of Northern Vietnam. Ninety-nine actinomycete strains were obtained on starch-casein agar media by dilution technique, only seven strains, named HP112, HP12, HP411, HPN11, HP 11, HPT13 and HPX12, showed significant antibacterial activity against both gram-positive and gram-negative bacteria (Bacillus subtilis ATCC 6633, Staphylococcus epidemidis ATCC 12228, Escherichia coli ATCC 11105). Further studies were carried out with the most active HP411 strain against Candida albicans ATCC 10231. This strain could grow rapidly on starch casein agar and other media with high salt containing 7-10% NaCl at 28-30oC. Spore-chain of HP411 showed an elongated and circular shape with 10 to 30 spores/chain. Identification of the strain was carried out by employing the taxonomical studies including the 16S rRNA sequence. Based on phylogenetic and phenotypic evidence it is proposed that HP411 to be belongs to species Streptomyces variabilis. The potent of the crude extract of fermentation broth of HP411 that are effective against wide range of pathogens: both grampositive, gram-negative and fungi. Further studies revealed that the crude extract HP411 could obtain the anticancer activity for cancer cell lines: Hep-G2 (liver cancer cell line); RD (cardiac and skeletal muscle letters cell line); FL (membrane of the uterus cancer cell line). However, the actinomycetes from marine ecosystem will be useful for the discovery of new drugs in the future.

The Causal Relationships between Destination Image, Tourist Satisfaction and Revisit Intention: A Case of the United Arab Emirates

The connection between past travel experience and tourists’ revisit behavioral intentions has not been widely explored but the existing studies suggest a close relationship between them. Destination image can equally be construed as having effects on the attitudes of the tourists at the end of their actual visitation and the satisfaction of a tourist with his or her travel experiences contributes to a revisit intention towards a particular destination. With strong marketing efforts, UAE is not only considered to be successful in attracting foreign investors, but is becoming the most popular tourism destination in the Arab region. UAE is seriously developing its tourism image and taking serious initiatives to attract new or repeat visitations from the international tourists. This study empirically investigates the causal relationships between tourism destination image, tourist satisfaction and revisit intention using UAE as a contextual study setting. A very clear picture emerged which provides a host country with potential implications for its tourism industry practitioners, Department of Tourism and Commerce Marketing and the travel agencies who act as the intermediaries between the potential tourists and the hotel operators.

Variation in the Traditional Knowledge of Curcuma longa L. in North-Eastern Algeria

Curcuma longa L. (Zingiberaceae), commonly known as turmeric, has a long history of traditional uses for culinary purposes as a spice and a food colorant. The present study aimed to document the ethnobotanical knowledge about Curcuma longa, and to assess the variation in the herbalists’ experience in Northeastern Algeria. Data were collected using semi-structured questionnaires and direct interviews with 30 herbalists. Ethnobotanical indices, including the fidelity level (FL%), the relative frequency citation (RFC), and use value (UV) were determined by quantitative methods. Diversity in the level of knowledge was analyzed using univariate, non-parametric, and multivariate statistical methods. Three main categories of uses were recorded for C. longa: for food, for medicine, and for cosmetic purposes. As a medicine, turmeric was used for the treatment of gastrointestinal, dermatological, and hepatic diseases. Medicinal and food uses were correlated with both forms of preparation (rhizome and powder). The age group did not influence the use. Multivariate analyses showed a significant variation in traditional knowledge, associated with the use value, origin, quality, and efficacy of the drug. The findings suggested that the geographical origin of C. longa affected the use in Algeria.

Effect of Age and Physiological Status on Some Serum Energy Metabolites and Progesterone in Ouled Djellal Breed Ewes in Algeria

The aim of this study is to determine the effect of age and physiological status on progesterone and energy metabolism of Ouled Djellal (O.D) breed ewes. 40 healthy ewes were divided into two groups, primiparous and multiparous, with 20 ewes in each group. The body weights (BW) (Kg) were 46.6 ± 4.20 and 59.2 ± 3.02, and consuming less 25 to 30% of their basal energetic requirements. The values of serum glucose, triglycerides and cholesterol were lower in pregnant than in non-pregnant ewes. The high to very high significant differences were found during the 15th week of pregnancy for glycaemia and triglyceridemia respectively. Concerning serum progesterone, a very highly significant difference (p

Multicasting Characteristics of All-Optical Triode Based On Negative Feedback Semiconductor Optical Amplifiers

We introduced an all-optical multicasting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multicasting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multicasting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.

The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of α-C:H Films

Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photoelectron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.

Shielding Effectiveness of Rice Husk and CNT Composites in X-Band Frequency

This paper presents the electromagnetic interference (EMI) shielding effectiveness of rice husk and carbon nanotubes (RHCNTs) composites in the X-band region (8.2-12.4 GHz). The difference weight ratio of carbon nanotubes (CNTs) were mix with the rice husk. The rectangular waveguide technique was used to measure the complex permittivity of the RHCNTs composites materials. The complex permittivity is represented in terms of both the real and imaginary parts of permittivity in X-band frequency. The conductivity of RHCNTs shows increasing when the ratio of CNTs mixture increases. The composites materials were simulated using Computer Simulation Technology (CST) Microwave Studio simulation software. The shielding effectiveness of RHCNTs and pure rice husk was compared. The highest EMI SE of 30 dB is obtained for RHCNTs composites of 10 wt % CNTs with 10mm thickness.

Inhibitory Effects of Extracts and Isolates from Kigelia africana Fruits against Pathogenic Bacteria and Yeasts

Kigelia africana (Lam.) Benth. (Bignoniaceae) is a reputed traditional remedy for various human ailments such as skin diseases, microbial infections, melanoma, stomach troubles, metabolic disorders, malaria and general pains. In spite of the fruit being widely used for purposes related to its antibacterial and antifungal properties, the chemical constituents associated with the activity have not been fully identified. To elucidate the active principles, we evaluated the antimicrobial activity of fruit extracts and purified fractions against Staphylococcus aureus, Enterococcus faecalis, Moraxella catarrhalis, Escherichia coli, Candida albicans and Candida tropicalis. Shade-dried fruits were powdered and extracted with hydroalcoholic (1:1) mixture by soaking at room temperature for 72 h. The crude extract was further fractionated by column chromatography, with successive elution using hexane, dichloromethane, ethyl acetate, acetone and methanol. The dichloromethane and ethyl acetate fractions were combined and subjected to column chromatography to furnish a wax and oil from the eluates of 20% and 40% ethyl acetate in hexane, respectively. The GC-MS and GC×GC-MS results revealed that linoleic acid, linolenic acid, palmitic acid, arachidic acid and stearic acid were the major constituents in both oil and wax. The crude hydroalcoholic extract exhibited the strongest activity with MICs of 0.125-0.5 mg/mL, followed by the ethyl acetate (MICs = 0.125-1.0 mg/mL), dichloromethane (MICs = 0.250-2.0 mg/mL), hexane (MICs = 0.25- 2.0 mg/mL), acetone (MICs = 0.5-2.0 mg/mL) and methanol (MICs = 1.0-2.0 mg/mL), whereas the wax (MICs = 2.0-4.0 mg/mL) and oil (MICs = 4.0-8.0 mg/mL) showed poor activity. The study concludes that synergistic interactions of chemical constituents could be responsible for the antimicrobial activity of K. africana fruits, which needs a more holistic approach to understand the mechanism of its antimicrobial activity.

Studying the Effects of Economic and Financial Development as well as Institutional Quality on Environmental Destruction in the Upper-Middle Income Countries

The current study explored the effect of economic development, financial development and institutional quality on environmental destruction in upper-middle income countries during the time period of 1999-2011. The dependent variable is logarithm of carbon dioxide emissions that can be considered as an index for destruction or quality of the environment given to its effects on the environment. Financial development and institutional development variables as well as some control variables were considered. In order to study cross-sectional correlation among the countries under study, Pesaran and Friz test was used. Since the results of both tests show cross-sectional correlation in the countries under study, seemingly unrelated regression method was utilized for model estimation. The results disclosed that Kuznets’ environmental curve hypothesis is confirmed in upper-middle income countries and also, financial development and institutional quality have a significant effect on environmental quality. The results of this study can be considered by policy makers in countries with different income groups to have access to a growth accompanied by improved environmental quality.

Business Penetration through Print Media: A Review of Select Enablers

It’s an era of high competition, dynamism and complexities which have forced organizations to change dramatically due to rising customer expectations. Marketers are under constant pressure to deliver finest to their customers. With the advent of technology, marketers have identified latest advertising media options to reach out to target audience. But the conventional ways of print advertisements still holds a deeper penetration and coverage. Various researchers and practitioners have studied the area of print media advertising and have tried to identify and implement advertisement effectiveness enablers. The purpose of this paper is to suggest select enablers for print media in Indian context using an integrated approach of review of literature and investigative interviews with academicians and experts from the area of advertising.

Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures

In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nanostructures (Zn1-δCraFebO; where δ = a + b = 20%, a = 5, 6, 8 & 10% and b = 15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractrometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UVvisible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.

Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies

Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.