Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders

Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.

Problems of Innovative Economy: Forming of«Innovative Society» And Innovative Receptivity

Today many countries have the ambitious purposes of long-term and continuous development: constant growth of competitiveness, maintenance of a high standard of living of the population, leadership in the world market. One of the best possible ways of achievement of these purposes is a transition of the countries to innovative economy. The paper presents the analyses of problems of forming of innovative receptivity to innovations and creation of «innovative society». Creation of an innovative culture in a society and increase of the level of prestige of innovative activity are the best ways of developing of innovative processes. The base of the analysis is a comparing of Russia and different developed countries according to the level of some indictors of innovative activity.1

In vitro Anti-tubercular Screening of Newly Synthesized Benzimidazole Derivatives

A series of 1-(1H-benzimidazol-2-yl)-3-(substituted phenyl)-2-propen-1-one were allowed to react with hydrazine hydrate and phenyl hydrazine in submitted reactions to get pyrazoline and phenyl pyrazoline derivatives. All the compounds entered for screening at the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv strain (ATCC 27294) using Microplate Alamar Blue Assay (MABA) susceptibility test. The results expressed as MIC (minimum inhibitory concentration) in μg/mL. Among the fifteen compounds, eight compounds were found to have MIC values less than 10 μg/mL. These were subjected for cytotoxicity assay in VERO cells to determine CC50 (cytotoxic concentration 50%) values and finally SI (Selectivity Index) were calculated. Compound (XV) 2-[5-(4- fluorophenyl)-1-phenyl-4,5-dihydro-1H-3-pyrazolyl]-1Hbenzimidazole was considered the best candidate of the series that could be a good starting point to develop new lead compounds in the fight against tuberculosis.

The Low-carbon Transition Exploration of China's Traditional Manufacturing Industries

Aiming at the problems existing in low-carbon technology of Chinese manufacturing industries, such as irrational energy structure, lack of technological innovation, financial constraints, this paper puts forward the suggestion that the leading role of the government is combined with the roles of enterprises and market. That is, through increasing the governmental funding the adjustment of the industrial structures and enhancement of the legal supervision are supported. Technological innovation is accelerated by the enterprises, and the carbon trading will be promoted so as to trigger the low-carbon revolution in Chinese manufacturing field.

Dissimilar Materials Joint and Effect of Angle Junction on Stress Distribution at Interface

in dissimilar material joints, failure often occurs along the interface between two materials due to stress singularity. Stress distribution and its concentration depend on materials and geometry of the junction. Inhomogenity of stress distribution at the interface of junction of two materials with different elastic modules and stress concentration in this zone are the main factors resulting in rupture of the junction. Effect of joining angle in the interface of aluminum-polycarbonate will be discussed in this paper. Computer simulation and finite element analysis by ABAQUS showed that convex interfacial joint leads to stress reduction at junction corners in compare with straight joint. This finding is confirmed by photoelastic experimental results.

Effect of Leadership Approach to Organizational Commitment: A Study in Transportation Sector

Employees commitments of vision and mission of organization is effected due to manager’s executes by approach of leadership The leaders who have attributions like vision, confidence and correctitude, sharing and participation, creativeness, progressive learning –improvement and responsibility are effective to increase organizational commitment if they are sensitive to expectation and requirement of employees in an organization. Studies about organizational commitment appear results that employees who have strong organizational commitment have the most contribution. In this study, “Leadership” and “Organizational Commitment” conduct surveys to 31 employees of Ahmet Özdemir Nak. Tic. San. A.Ş. which has operations in road and railway transportation sector. It is analyzed the effects of leadership approach to organizational commitment deals with result of survey.

Capacitive ECG Measurement by Conductive Fabric Tape

Capacitive electrocardiogram (ECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available on its implementation, especially for multichannel system in standard ECG leads. This paper begins from the design criteria for capacitive ECG measurement and presents a multichannel limb-lead capacitive ECG system with conductive fabric tapes pasted on a double layer PCB as the capacitive sensors. The proposed prototype system incorporates a capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented prototype system has been verified to be stable by theoretic analysis and practical long-term experiments. The signal quality is competitive to that acquired by commercial ECG machines. The feasible size and distance of capacitive sensor have also been evaluated by a series of tests. From the test results, it is suggested to be greater than 60 cm2 in sensor size and be smaller than 1.5 mm in distance for capacitive ECG measurement.

Decentralized Handoff for Microcellular Mobile Communication System using Fuzzy Logic

Efficient handoff algorithms are a cost-effective way of enhancing the capacity and QoS of cellular system. The higher value of hysteresis effectively prevents unnecessary handoffs but causes undesired cell dragging. This undesired cell dragging causes interference or could lead to dropped calls in microcellular environment. The problems are further exacerbated by the corner effect phenomenon which causes the signal level to drop by 20-30 dB in 10-20 meters. Thus, in order to maintain reliable communication in a microcellular system new and better handoff algorithms must be developed. A fuzzy based handoff algorithm is proposed in this paper as a solution to this problem. Handoff on the basis of ratio of slopes of normal signal loss to the actual signal loss is presented. The fuzzy based solution is supported by comparing its results with the results obtained in analytical solution.

Sustainability Management for Wine Production: A Case of Thailand

At present, increased concerns about global environmental problems have magnified the importance of sustainability management. To move towards sustainability, companies need to look at everything from a holistic perspective in order to understand the interconnections between economic growth and environmental and social sustainability. This paper aims to gain an understanding of key determinants that drive sustainability management and barriers that hinder its development. It employs semi-structured interviews with key informants, site observation and documentation. The informants are production, marketing and environmental managers of the leading wine producer, which aims to become an Asia-s leader in wine & wine based products. It is found that corporate image and top management leadership are the primary factors influencing the adoption of sustainability management. Lack of environmental knowledge and inefficient communication are identified as barriers.

Semi-Automatic Trend Detection in Scholarly Repository Using Semantic Approach

Currently WWW is the first solution for scholars in finding information. But, analyzing and interpreting this volume of information will lead to researchers overload in pursuing their research. Trend detection in scientific publication retrieval systems helps scholars to find relevant, new and popular special areas by visualizing the trend of input topic. However, there are few researches on trend detection in scientific corpora while their proposed models do not appear to be suitable. Previous works lack of an appropriate representation scheme for research topics. This paper describes a method that combines Semantic Web and ontology to support advance search functions such as trend detection in the context of scholarly Semantic Web system (SSWeb).

Privacy Issues in Pervasive Healthcare Monitoring System: A Review

Privacy issues commonly discussed among researchers, practitioners, and end-users in pervasive healthcare. Pervasive healthcare systems are applications that can support patient-s need anytime and anywhere. However, pervasive healthcare raises privacy concerns since it can lead to situations where patients may not be aware that their private information is being shared and becomes vulnerable to threat. We have systematically analyzed the privacy issues and present a summary in tabular form to show the relationship among the issues. The six issues identified are medical information misuse, prescription leakage, medical information eavesdropping, social implications for the patient, patient difficulties in managing privacy settings, and lack of support in designing privacy-sensitive applications. We narrow down the issues and chose to focus on the issue of 'lack of support in designing privacysensitive applications' by proposing a privacy-sensitive architecture specifically designed for pervasive healthcare monitoring systems.

Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach

Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.

An Integrated Biotechnology Database of the National Agricultural Information Center in Korea

The National Agricultural Biotechnology Information Center (NABIC) plays a leading role in the biotechnology information database for agricultural plants in Korea. Since 2002, we have concentrated on functional genomics of major crops, building an integrated biotechnology database for agro-biotech information that focuses on bioinformatics of major agricultural resources such as rice, Chinese cabbage, and microorganisms. In the NABIC, integration-based biotechnology database provides useful information through a user-friendly web interface that allows analysis of genome infrastructure, multiple plants, microbial resources, and living modified organisms.

Investigation of Effective Parameters on Annealing and Hot Spotting Processes for Straightening of Bent Turbine Rotors

The most severe damage of the turbine rotor is its distortion. The rotor straightening process must lead, at the first stage, to removal of the stresses from the material by annealing and next, to straightening of the plastic distortion without leaving any stress by hot spotting. The straightening method does not produce stress accumulations and the heating technique, developed specifically for solid forged rotors and disks, enables to avoid local overheating and structural changes in the material. This process also does not leave stresses in the shaft material. An experimental study of hot spotting is carried out on a large turbine rotor and some of the most important effective parameters that must be considered on annealing and hot spotting processes are investigated in this paper.

Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions

In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.

The Comparison of Anchor and Star Schema from a Query Performance Perspective

Today's business environment requires that companies have access to highly relevant information in a matter of seconds. Modern Business Intelligence tools rely on data structured mostly in traditional dimensional database schemas, typically represented by star schemas. Dimensional modeling is already recognized as a leading industry standard in the field of data warehousing although several drawbacks and pitfalls were reported. This paper focuses on the analysis of another data warehouse modeling technique - the anchor modeling, and its characteristics in context with the standardized dimensional modeling technique from a query performance perspective. The results of the analysis show information about performance of queries executed on database schemas structured according to principles of each database modeling technique.

A Tool for Modeling Slope Instability Triggered by Piping

The paper deals with the analysis of triggering conditions and evolution processes of piping phenomena, in relation to both mechanical and hydraulic aspects. In particular, the aim of the study is to predict slope instabilities triggered by piping, analysing the conditions necessary for a flow failure to occur. Really, the mechanical effect involved in the loads redistribution around the pipe is coupled to the drainage process arising from higher permeability of the pipe. If after the pipe formation, the drainage goes prevented for pipe clogging, the porewater pressure increase can lead to the failure or even the liquefaction, with a subsequent flow slide. To simulate the piping evolution and to verify relevant stability conditions, a iterative coupled modelling approach has been pointed out. As example, the proposed tool has been applied to the Stava Valley disaster (July, 1985), demonstrating that piping might be one of triggering phenomena of the tailings dams collapse.

Theory of Fractions in College Algebra Course

The paper compares the treatment of fractions in a typical undergraduate college curriculum and in abstract algebra textbooks. It stresses that the main difference is that the undergraduate curriculum treats equivalent fractions as equal, and this treatment eventually leads to paradoxes and impairs the students- ability to perceive ratios, proportions, radicals and rational exponents adequately. The paper suggests a simplified version of rigorous theory of fractions suitable for regular college curriculum.

The Impact of High Performance Work Systems- on Firm Performance in MNCs and Local Manufacturing Firms in Malaysia

The empirical studies on High Performance Work Systems (HPWSs) and their impacts on firm performance have remarkably little in the developing countries. This paper reviews literatures on the HPWSs practices in different work settings, Western and Asian countries. A review on the empirical research leads to a conclusion that, country differences influence the Human Resource Management (HRM) practices. It is anticipated that there are similarities and differences in the extent of implementation of HPWSs practices by the Malaysian manufacturing firms due to the organizational contextual factors and, the HPWSs have a significant impact on firms- better performance amongst MNCs and local firms.

Envelope-Wavelet Packet Transform for Machine Condition Monitoring

Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.