Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium

This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.

Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA. 

Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

In this paper, the dependence of soliton pulses with respect to phase in a 10Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the ‘I’ also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point (I).

Changing Geomorphosites in a Changing Lake: How Environmental Changes in Urmia Lake Have Been Driving Vanishing or Creating of Geomorphosites

Any variation in environmental characteristics of geomorphosites would lead to destabilisation of their geotouristic values all around the planet. The Urmia lake, with an area of approximately 5,500 km2 and a catchment area of 51,876 km2, and to which various reasons over time, especially in the last fifty years have seen a sharp decline and have decreased by about 93 % in two recent decades. These variations are not only driving significant changes in the morphology and ecology of the present lake landscape, but at the same time are shaping newly formed morphologies, which vanished some valuable geomorphosites or develop into smaller geomorphosites with significant value from a scientific and cultural point of view. This paper analyses and discusses features and evolution in several representative coastal and island geomorphosites. For this purpose, a total of 23 geomorphosites were studied in two data series (1963 and 2015) and the respective data were compared and analysed. The results showed, the total loss in geomorphosites area in a half century amounted to a loss of more than 90% of the valuable geomorphosites. Moreover, the comparison between the mean yearly value of coastal area lost over the entire period and the yearly average calculated for the shorter period (1998- 2014) clearly indicates a pattern of acceleration. This acceleration in the rate of reduction in lake area was seen in most of the southern half of the lake. In the region as well, the general water-level falling is not only causing the loss of a significant water resource, which is followed by major impact on regional ecosystems, but is also driving the most marked recent (last century) changes in the geotouristic landscapes. In fact, the disappearance of geomorphosites means the loss of tourism phenomenon. In this context attention must be paid to the question of conservation. The action needed to safeguard geomorphosites includes: 1) Preventive action, 2) Corrective action, and 3) Sharing knowledge.

Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics

Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.

Characteristic Study on Conventional and Soliton Based Transmission System

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and Hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system respectively and evaluate the system performance in terms of Quality factor. From the analysis, we could prove that the soliton pulse has the consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

An Approach to Flatten the Gain of Fiber Raman Amplifiers with Multi-Pumping

The effects of the pumping wavelength and their power on the gain flattening of a fiber Raman amplifier (FRA) are investigated. The multi-wavelength pumping scheme is utilized to achieve gain flatness in FRA. It is proposed that gain flatness becomes better with increase in number of pumping wavelengths applied. We have achieved flat gain with 0.27 dB fluctuation in a spectral range of 1475-1600 nm for a Raman fiber length of 10 km by using six pumps with wavelengths with in the 1385-1495 nm interval. The effect of multi-wavelength pumping scheme on gain saturation in FRA is also studied. It is proposed that gain saturation condition gets improved by using this scheme and this scheme is more useful for higher spans of Raman fiber length.

The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Optimum Design of Attenuator of Spun-Bond Production System

Nanofibers are effective materials which have frequently been investigated to produce high quality air filters. As an environmental approach our aim is to achieve nanofibers by melting. In spun-bond systems extruder, spin-pump, nozzle package and attenuator are used. Molten polymer which flows from extruder is made steady by spin-pump. Regular melt passes through nozzle holes and forms fibers under high pressure. The fibers pulled from nozzle are shrunk to micron size by an attenuator; after solidification, they are collected on a conveyor. In this research different designs of attenuator system have been studied; and also CFD analysis has been done on these different designs. Afterwards, one of these designs tested and finally some optimizations have been done to reduce pressure loss and increase air velocity.

Customer Churn Prediction: A Cognitive Approach

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

The Urban Expansion Characterization of the Bir El Djir Municipality Using Remote Sensing and GIS

Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 1201.5 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.

Financial Problems Met in the Tourism Sector in Turkey: A Survey on the Tourism Businesses

As the economies of other countries in the Mediterranean Basin, the tourism sector in our country has a high denominator in economics. Tourism businesses, which are building blocks of tourism, sector faces with a variety of problems during their activities. These problems faced make business efficiency and competition conditions of the businesses difficult. Most of the problems faced by the tourism businesses and the information of consumers about consumers’ rights were used in this study, which is conducted to determine the problems of tourism businesses in the Central Anatolia Region. It is aimed to contribute the awareness of staff and executives working at tourism sector and to attract attention of businesses active concurrently with tourism sector and legislators.

An Application of Self-Health Risk Assessment among Populations Living in the Vicinity of a Fiber-Cement Roofing Factory

The objective of this study was to assess whether living in proximity to a roofing fiber cement factory in southern Thailand was associated with physical, mental, social, and spiritual health domains measured in a self-reported health risk assessment (HRA) questionnaire. A cross-sectional study was conducted among community members divided into two groups: near population (living within 0-2km of factory) and far population (living within 2-5km of factory) (N=198). A greater proportion of those living far from the factory (65.34%) reported physical health problems than the near group (51.04%) (p =0.032). This study has demonstrated that the near population group had higher proportion of participants with positive ratings on mental assessment (30.34%) and social health impacts (28.42%) than far population group (10.59% and 16.67%, respectively) (p

Effect of Incentives on Knowledge Sharing and Learning – Evidence from the Indian IT Sector

The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) programmethanks to their in-house technological abilities. This paper tries to study the various knowledge based incentive programmes and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM Incentives, Knowledge Sharing and Learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.

Hepatotoxicity Induced by Arsenic Trioxide in Adult Mice and Their Progeny

In this investigation, we have evaluated the effects of arsenic trioxide on hepatic function in pregnant and lactating Swiss albino mice and their suckling pups. Experiments were carried out on female mice given 175 ppm As2O3 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Our results showed a significant decrease in plasma levels of total protein and albumin, cholesterol and triglyceride in As2O3 treated mice and their pups. The hyperbilirubinemia and the increased plasma total alkaline phosphatase activity suggested the presence of cholestasis. Transaminase activities as well as lactate deshydrogenase activity in plasma, known as biomarkers of hepatocellular injury, were elevated indicating hepatic cells’ damage after treatment with As2O3. Exposure to arsenic led to an increase of liver thiobarbituric acid reactive substances level along with a concomitant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase and in glutathione.

Environmental Pollution and Health Risks of Residents Living Near Ewekoro Cement Factory, Ewekoro, Nigeria

Generally the natural environment is made up of air, water and soil. The release of emission of industrial waste into anyone of the components of the environment causes pollution. Industrial pollution significantly threatens the inherent right of people, to the enjoyment of a safe and secure environment. The aim of this paper is to assess the effect of environmental pollution and health risks of residents living near Ewekoro cement factory. The research made use of IKONOS imagery for Geographical Information System (GIS) to buffer and extract buildings that are less than 1km to the factory, within 1km to 5km and above 5km to the factory. Also questionnaire was used to elicit information on the socio-economic factors, effect of environmental pollution on residents and measures adopted to control industrial pollution on the residents. Findings show that most buildings that fall between less than 1km and 1km to 5km to the factory have high health risk in the study area. The study recommended total relocation for the residents of the study area to reduce health risk problems.

Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils

The California Bearing Ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some finegrained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.

Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Low Nonlinear Effects Index-Guiding Nanostructured Photonic Crystal Fiber

Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding nanostructured photonic crystal fiber (IG-NPCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600nm using the proposed design. According to the new structure of nanostructured PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained.