Dextran/Poly(L-histidine) Graft Copolymer for pH-Responsive Drug Delivery

pH-sensitive drug targeting using nanoparticles for cancer chemotherapy have been spotlighted in recent decades. Graft copolymer composed of poly (L-histidine) (PHS) and dextran (DexPHS) was synthesized and pH-sensitive nanoparticles were fabricated for pH-responsive drug delivery of doxorubicin (DOX). Nanoparticles of DexPHS showed pH-sensitive changes in particle sizes and drug release behavior, i.e. particle sizes and drug release rate were increased at acidic pH, indicating that DexPHS nanoparticles have pH-sensitive drug delivery potentials. Antitumor activity of DOX-incorporated DexPHS nanoparticles were studied using CT26 colorectal carcinoma cells. Results indicated that fluorescence intensity was higher at acidic pH than basic pH. These results indicated that DexPHS nanoparticles have pH-responsive drug targeting.

Investigating the Effects of Sociotechnical Changes

Cognizant of the fact that enterprise systems involve organizational change and their implementation is over shadowed by a high failure rate, it is argued that there is the need to focus attention on employees- perceptions of such organizational change when explaining adoption behavior of enterprise systems. For this purpose, the research incorporates a conceptual constructo fattitude toward change that captures views about the need for organizational change. Centered on this conceptual construct, the research model includes beliefs regarding the system and behavioral intention as its consequences, and the personal characteristics of organizational commitment and perceived personal competence as its antecedents. Structural equation analysis using LISREL provides significant support for the proposed relationships. Theoretical and practical implications are discussed along with limitations.

Mathematical Modeling of Surface Roughness in Surface Grinding Operation

A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.

Finite Element Prediction of Hip Fracture during a Sideways Fall

Finite element method was applied to model damage development in the femoral neck during a sideways fall. The femoral failure was simulated using the maximum principal strain criterion. The evolution of damage was consistent with previous studies. It was initiated by compressive failure at the junction of the superior aspect of the femoral neck and the greater trochanter. It was followed by tensile failure that occurred at the inferior aspect of the femoral neck before a complete transcervical fracture was observed. The estimated failure line was less than 50° from the horizontal plane (Pauwels type II).

Architecture Integrating Wireless Body Area Networks with Web Services for Ubiquitous Healthcare Service Provisioning

Recent advancements in sensor technologies and Wireless Body Area Networks (WBANs) have led to the development of cost-effective healthcare devices which can be used to monitor and analyse a person-s physiological parameters from remote locations. These advancements provides a unique opportunity to overcome current healthcare challenges of low quality service provisioning, lack of easy accessibility to service varieties, high costs of services and increasing population of the elderly experienced globally. This paper reports on a prototype implementation of an architecture that seamlessly integrates Wireless Body Area Network (WBAN) with Web services (WS) to proactively collect physiological data of remote patients to recommend diagnostic services. Technologies based upon WBAN and WS can provide ubiquitous accessibility to a variety of services by allowing distributed healthcare resources to be massively reused to provide cost-effective services without individuals physically moving to the locations of those resources. In addition, these technologies can reduce costs of healthcare services by allowing individuals to access services to support their healthcare. The prototype uses WBAN body sensors implemented on arduino fio platforms to be worn by the patient and an android smart phone as a personal server. The physiological data are collected and uploaded through GPRS/internet to the Medical Health Server (MHS) to be analysed. The prototype monitors the activities, location and physiological parameters such as SpO2 and Heart Rate of the elderly and patients in rehabilitation. Medical practitioners would have real time access to the uploaded information through a web application.

Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of Hg (II) on Palm Shell Powder

Palm shell obtained from coastal part of southern India was studied for the removal for the adsorption of Hg (II) ions. Batch adsorption experiments were carried out as a function of pH, concentration of Hg (II) ions, time, temperature and adsorbent dose. Maximum removal was seen in the range pH 4.0- pH 7.0. The palm shell powder used as adsorbent was characterized for its surface area, SEM, PXRD, FTIR, ion exchange capacity, moisture content, and bulk density, soluble content in water and acid and pH. The experimental results were analyzed using Langmuir I, II, III, IV and Freundlich adsorption isotherms. The batch sorption kinetics was studied for the first order reversible reaction, pseudo first order; pseudo second order reaction and the intra-particle diffusion reaction. The biomass was successfully used for removal Hg (II) from synthetic and industrial effluents and the technique appears industrially applicable and viable.

Polarization Modulation by free-Standing Asymmetric Hole Arrays

We theoretically demonstrate modulation of light polarization by a crossed rectangular hole array with asymmetric arm lengths. There are two waveguide modes that can modulate the x- and y- polarized incident waves independently. A specific structure is proposed to convert a left-hand incident wave to a right-hand outgoing wave by transmission.

SAF: A Substitution and Alignment Free Similarity Measure for Protein Sequences

The literature reports a large number of approaches for measuring the similarity between protein sequences. Most of these approaches estimate this similarity using alignment-based techniques that do not necessarily yield biologically plausible results, for two reasons. First, for the case of non-alignable (i.e., not yet definitively aligned and biologically approved) sequences such as multi-domain, circular permutation and tandem repeat protein sequences, alignment-based approaches do not succeed in producing biologically plausible results. This is due to the nature of the alignment, which is based on the matching of subsequences in equivalent positions, while non-alignable proteins often have similar and conserved domains in non-equivalent positions. Second, the alignment-based approaches lead to similarity measures that depend heavily on the parameters set by the user for the alignment (e.g., gap penalties and substitution matrices). For easily alignable protein sequences, it's possible to supply a suitable combination of input parameters that allows such an approach to yield biologically plausible results. However, for difficult-to-align protein sequences, supplying different combinations of input parameters yields different results. Such variable results create ambiguities and complicate the similarity measurement task. To overcome these drawbacks, this paper describes a novel and effective approach for measuring the similarity between protein sequences, called SAF for Substitution and Alignment Free. Without resorting either to the alignment of protein sequences or to substitution relations between amino acids, SAF is able to efficiently detect the significant subsequences that best represent the intrinsic properties of protein sequences, those underlying the chronological dependencies of structural features and biochemical activities of protein sequences. Moreover, by using a new efficient subsequence matching scheme, SAF more efficiently handles protein sequences that contain similar structural features with significant meaning in chronologically non-equivalent positions. To show the effectiveness of SAF, extensive experiments were performed on protein datasets from different databases, and the results were compared with those obtained by several mainstream algorithms.

Optimal Route Policy in Air Traffic Control with Competing Airlines

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System

MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.

GODYS-PC: a Software Package for Modeling,Simulating and Analyzing Dynamic Systems

In this paper, we introduce GODYS-PC software package for modeling, simulating and analyzing dynamic systems. To illustrate the use of GODYS-PC we present a few examples which concern modeling and simulating of engineering systems. In order to compare GODYS-PC with widely used in academia and industry Simulink®, the same examples are provided both in GODYS-PC and Simulink®.

Technical Trading Rules in Emerging Stock Markets

Literature reveals that many investors rely on technical trading rules when making investment decisions. If stock markets are efficient, one cannot achieve superior results by using these trading rules. However, if market inefficiencies are present, profitable opportunities may arise. The aim of this study is to investigate the effectiveness of technical trading rules in 34 emerging stock markets. The performance of the rules is evaluated by utilizing White-s Reality Check and the Superior Predictive Ability test of Hansen, along with an adjustment for transaction costs. These tests are able to evaluate whether the best model performs better than a buy-and-hold benchmark. Further, they provide an answer to data snooping problems, which is essential to obtain unbiased outcomes. Based on our results we conclude that technical trading rules are not able to outperform a naïve buy-and-hold benchmark on a consistent basis. However, we do find significant trading rule profits in 4 of the 34 investigated markets. We also present evidence that technical analysis is more profitable in crisis situations. Nevertheless, this result is relatively weak.

Palmprint based Cancelable Biometric Authentication System

A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.

Account Management Method with Blind Signature Scheme

Reducing the risk of information leaks is one of the most important functions of identity management systems. To achieve this purpose, Dey et al. have already proposed an account management method for a federated login system using a blind signature scheme. In order to ensure account anonymity for the authentication provider, referred to as an IDP (identity provider), a blind signature scheme is utilized to generate an authentication token on an authentication service and the token is sent to an IDP. However, there is a problem with the proposed system. Malicious users can establish multiple accounts on an IDP by requesting such accounts. As a measure to solve this problem, in this paper, the authors propose an account checking method that is performed before account generation.

2D Image Processing for DSO Astrophotography

The new concept of two–dimensional (2D) image processing implementation for auto-guiding system is shown in this paper. It is dedicated to astrophotography and operates with astronomy CCD guide cameras or with self-guided dual-detector CCD cameras and ST4 compatible equatorial mounts. This idea was verified by MATLAB model, which was used to test all procedures and data conversions. Next the circuit prototype was implemented at Altera MAX II CPLD device and tested for real astronomical object images. The digital processing speed of CPLD prototype board was sufficient for correct equatorial mount guiding in real-time system.

Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems

The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.

On the Operation Mechanism and Device Modeling of AlGaN/GaN High Electron Mobility Transistors (HEMTs)

In this work, the physical based device model of AlGaN/GaN high electron mobility transistors (HEMTs) has been established and the corresponding device operation behavior has been investigated also by using Sentaurus TCAD from Synopsys. Advanced AlGaN/GaN hetero-structures with GaN cap layer and AlN spacer have been considered and the GaN cap layer and AlN spacer are found taking important roles on the gate leakage blocking and off-state breakdown voltage enhancement.

Stability Optimization of Functionally Graded Pipes Conveying Fluid

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.

Molecular Epidemiology and Genotyping of Bovine Viral Diarrhea Virus in Xinjiang Uygur Autonomous Region of China

As part of national epidemiological survey on bovine viral diarrhea virus (BVDV), a total of 274 dejecta samples were collected from 14 cattle farms in 8 areas of Xinjiang Uygur Autonomous Region in northwestern China. Total RNA was extracted from each sample, and 5--untranslated region (UTR) of BVDV genome was amplified by using two-step reverse transcriptase-polymerase chain reaction (RT-PCR). The PCR products were subsequently sequenced to study the genetic variations of BVDV in these areas. Among the 274 samples, 33 samples were found virus-positive. According to sequence analysis of the PCR products, the 33 samples could be arranged into 16 groups. All the sequences, however, were highly conserved with BVDV Osloss strains. The virus possessed theses sequences belonged to BVDV-1b subtype by phylogenetic analysis. Based on these data, we established a typing tree for BVDV in these areas. Our results suggested that BVDV-1b was a predominant subgenotype in northwestern China and no correlation between the genetic and geographical distances could be observed above the farm level.