Sediment Transport Experiments: The Influence of the Furrow Geometry

In this experimental work, we have shown that the geometric shape of the grooves (furrows) plays an important role in sediment dynamics. In addition, the rheological behaviour of solid discharge does not depend only on the velocity discharge but also on the geometric shape.

Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor

A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.

The Effect of Dynamic Eccentricity on Induction Machine Stator Currents (Part A)

Current spectrums of a high power induction machine was calculated for the cases of full symmetry, static and dynamic eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums in full symmetry, static and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one. The paper includes one case study, refers to dynamic eccentricity, to present the spectrum of the measured current and demonstrate the existence of the harmonics related to dynamic eccentricity. The zooms of current spectrums around the main slot harmonic zone are included to simplify the comparison and prove the existence of the dynamic eccentricity harmonics in both calculated and measured current spectrums.

Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.

Fast and Efficient On-Chip Interconnection Modeling for High Speed VLSI Systems

Timing driven physical design, synthesis, and optimization tools need efficient closed-form delay models for estimating the delay associated with each net in an integrated circuit (IC) design. The total number of nets in a modern IC design has increased dramatically and exceeded millions. Therefore efficient modeling of interconnection is needed for high speed IC-s. This paper presents closed–form expressions for RC and RLC interconnection trees in current mode signaling, which can be implemented in VLSI design tool. These analytical model expressions can be used for accurate calculation of delay after the design clock tree has been laid out and the design is fully routed. Evaluation of these analytical models is several orders of magnitude faster than simulation using SPICE.

Non-Isothermal Kinetics of Crystallization and Phase Transformation of SiO2-Al2O3-P2O5-CaO-CaF Glass

The crystallization kinetics and phase transformation of SiO2.Al2O3.0,56P2O5.1,8CaO.0,56CaF2 glass have been investigated using differential thermal analysis (DTA), x-ray diffraction (XRD), and scanning electron microscopy (SEM). Glass samples were obtained by melting the glass mixture at 14500С/120 min. in platinum crucibles. The mixture were prepared from chemically pure reagents: SiO2, Al(OH)3, H3PO4, CaCO3 and CaF2. The non-isothermal kinetics of crystallization was studied by applying the DTA measurements carried out at various heating rates. The activation energies of crystallization and viscous flow were measured as 348,4 kJ.mol–1 and 479,7 kJ.mol–1 respectively. Value of Avrami parameter n ≈ 3 correspond to a three dimensional of crystal growth mechanism. The major crystalline phase determined by XRD analysis was fluorapatite (Ca(PO4)3F) and as the minor phases – fluormargarite (CaAl2(Al2SiO2)10F2) and vitlokite (Ca9P6O24). The resulting glass-ceramic has a homogeneous microstructure, composed of prismatic crystals, evenly distributed in glass phase.

Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves

Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.

Speaker Identification Using Admissible Wavelet Packet Based Decomposition

Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.

Wastewater Treatment in Moving-Bed Biofilm Reactor operated by Flow Reversal Intermittent Aeration System

Intermittent aeration process can be easily applied on the existing activated sludge system and is highly reliable against the loading changes. It can be operated in a relatively simple way as well. Since the moving-bed biofilm reactor method processes pollutants by attaching and securing the microorganisms on the media, the process efficiency can be higher compared to the suspended growth biological treatment process, and can reduce the return of sludge. In this study, the existing intermittent aeration process with alternating flow being applied on the oxidation ditch is applied on the continuous flow stirred tank reactor with advantages from both processes, and we would like to develop the process to significantly reduce the return of sludge in the clarifier and to secure the reliable quality of treated water by adding the moving media. Corresponding process has the appropriate form as an infrastructure based on u- environment in future u- City and is expected to accelerate the implementation of u-Eco city in conjunction with city based services. The system being conducted in a laboratory scale has been operated in HRT 8hours except for the final clarifier and showed the removal efficiency of 97.7 %, 73.1 % and 9.4 % in organic matters, TN and TP, respectively with operating range of 4hour cycle on system SRT 10days. After adding the media, the removal efficiency of phosphorus showed a similar level compared to that before the addition, but the removal efficiency of nitrogen was improved by 7~10 %. In addition, the solids which were maintained in MLSS 1200~1400 at 25 % of media packing were attached all onto the media, which produced no sludge entering the clarifier. Therefore, the return of sludge is not needed any longer.

SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Translator Design to Model Cpp Files

The most reliable and accurate description of the actual behavior of a software system is its source code. However, not all questions about the system can be answered directly by resorting to this repository of information. What the reverse engineering methodology aims at is the extraction of abstract, goal-oriented “views" of the system, able to summarize relevant properties of the computation performed by the program. While concentrating on reverse engineering we had modeled the C++ files by designing the translator.

Enzymes Activity in Bovine Cervical Mucus Related to the Time of Ovulation And Insemination

Forty-five dairy cows were used to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α -amylase in the cervical mucus of cows during spontaneous and induced estrus using progestagen or PGF2 α and to determine whether these enzymes affect the fertility in cows with induced estrus, at the time of Al. The animals were assigned to 3 groups (no treatment, a Crestar® for 12 days, a double im injection of PGF2 α). The cows were artificially inseminated (AI). Cervical mucus samples were collected from all cows 3 to 5 min before the AI. The results are summarized as follows: ALP and α -amylase activity for spontaneous estrus were similar to those for induced estrus (P>0.05) . LDH activity levels during spontaneous and PGF2 α induced estrus was significantly lower (P < 0.001) than that in progestagene induced estrus groups. While no difference was found between the first and the third groups. Our result showed a significant difference in LDH activity levels between cows conceived with 2 or more AI and those conceived with 1 AI. The result of this study showed that the enzyme activity in cervical mucus is helpful for detection of ovulation and time of AI.

Thermoelastic Damping of Inextensional Hemispherical Shell

In this work, thermoelastic damping effect on the hemi- spherical shells is investigated. The material is selected silicon, and heat conduction equation for thermal flow is solved to obtain the temperature profile in which bending approximation with inextensional assumption of the model. Using the temperature profile, eigen-value analysis is performed to get the natural frequencies of hemispherical shells. Effects of mode numbers, radii and radial thicknesses of the model on the natural frequencies are analyzed in detail. Furthermore, the quality factor (Q-factor) is defined, and discussed for the ring and hemispherical shell.

Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water

Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.

The Project of Three Photovoltaic Systems in an Italian Natural Park

The development of renewable energies - particularly energy from wind, water, solar power and biomass - is a central aim of the European Commission's energy policy. There are several reasons for this choice: renewable energies are sustainable, nonpolluting, widely available and clean. Increasing the share of renewable energy in the energy balance enhances sustainability. It also helps to improve the security of energy supply by reducing the Community's growing dependence on imported energy sources.In this paper it was studied the possibility to realize three photovoltaic systems in the Italian Natural Park “Gola della Rossa e di Frasassi". The first photovoltaic system is a grid-connected system for Services and Documentation Center of Castelletta with a nominal power of about 6 kWp. The second photovoltaic system is a grid-connected integrated system on the ticket office-s roof with a nominal power of about 4 kWp. The third project is set up by five grid-connected systems integrated on the roofs of the bungalows in Natural Park-s tourist camping with a nominal power of about 10 kWp. The electricity which is generated by all these plants is purchased according to the Italian program called “Conto Energia". Economical analysis and the amount of the avoided CO2 emissions are elaborated for these photovoltaic systems.

Characteristics of Intronic and Intergenic Human miRNAs and Features of their Interaction with mRNA

Regulatory relationships of 686 intronic miRNA and 784 intergenic miRNAs with mRNAs of 51 intronic miRNA coding genes were established. Interaction features of studied miRNAs with 5'UTR, CDS and 3'UTR of mRNA of each gene were revealed. Functional regions of mRNA were shown to be significantly heterogenous according to the number of binding sites of miRNA and to the location density of these sites.

Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network

Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.

Practical Aspects of Face Recognition

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.

Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

Patents as Indicators of Innovative Environment

The main problem is that there is a very low innovation performance in Latvia. Since Latvia is a Member State of European Union, it also shall have to fulfill the set targets and to improve innovative results.Universities are one of the main performers to provide innovative capacity of country. University, industry and government need to cooperate for getting best results.The intellectual property is one of the indicators to determine innovation level in the country or organization, and patents are one of the characteristics of intellectual property.The objective of the article is to determine indicators characterizing innovative environment in Latvia and influence of the development of universities on them.The methods that will be used in the article to achieve the objectives are quantitative and qualitative analysis of the literature, statistical data analysis and graphical analysis methods.