Abstract: One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin in the heterogenous plastification produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the effect of the grinding procedure on the residual stress state generated by a quasi-static indentation. The model consists in a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation. The indentation model configured with two loads was then exposed to two grinding procedures and the result was analyzed. It was observed that the grinding procedure will have a significant effect on the stress state.
Abstract: In recent years, interest in ecogenetic and biomedical problems related to the effects on the population of radon and its daughter decay products has increased significantly. Of particular interest is the assessment of the consequence of irradiation at hazardous radon areas, which includes the Almaty region due to the large number of tectonic faults that enhance radon emanation. In connection with the foregoing, the purpose of this work was to study the genetic effects of exposure to supernormal radon doses on the alpha-radiation model. Irradiation does not affect the growth of the cell, but rather its ability to differentiate. In addition, irradiation can lead to somatic mutations, morphoses and modifications. These damages most likely occur from changes in the composition of the substances of the cell. Such changes are epigenetic since they affect the regulatory processes of ontogenesis. Variability in the expression of regulatory genes refers to conditional mutations that modify the formation of signs of intraspecific similarity. Characteristic features of these conditional mutations are the dominant type of their manifestation, phenotypic asymmetry and their instability in the generations. Currently, the terms “morphosis” and “modification” are used to describe epigenetic variability, which are maintained in Drosophila melanogaster cultures using linkaged X- chromosomes, and the mutant X-chromosome is transmitted along the paternal line. In this paper, we investigated the epigenetic effects of alpha particles, whose source in nature is mainly radon and its daughter decay products. In the experiment, an isotope of plutonium-238 (Pu238), generating radiation with an energy of about 5500 eV, was used as a source of alpha particles. In an experiment in the first generation (F1), deformities or morphoses were found, which can be called "radiation syndromes" or mutations, the manifestation of which is similar to the pleiotropic action of genes. The proportion of morphoses in the experiment was 1.8%, and in control 0.4%. In this experiment, the morphoses in the flies of the first and second generation looked like black spots, or melanomas on different parts of the imago body; "generalized" melanomas; curled, curved wings; shortened wing; bubble on one wing; absence of one wing, deformation of thorax, interruption and violation of tergite patterns, disruption of distribution of ocular facets and bristles; absence of pigmentation of the second and third legs. Statistical analysis by the Chi-square method showed the reliability of the difference in experiment and control at P ≤ 0.01. On the basis of this, it can be considered that alpha particles, which in the environment are mainly generated by radon and its isotopes, have a mutagenic effect that manifests itself, mainly in the formation of morphoses or deformities.
Abstract: The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.
Abstract: To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.
Abstract: The purpose of this study was to determine tourist and community perception-based sustainable tourism indicators as well as Human Pressure Index (HPI) and Tourist Activity Index (TAI). Study was carried out in Sinharaja forest which is considered as one of the major eco-tourism destination in Sri Lanka. Data were gathered using a pre-tested semi-structured questionnaire as well as records from Forest department. Convenient sampling technique was applied. For the majority of issues, the responses were obtained on multi-point Likert-type scales. Visual portrayal was used for display analyzed data. The study revealed that the host community of the Kudawa gets many benefits from tourism. Also, tourism has caused negative impacts upon the environment and community. The study further revealed the need of proper waste management and involvement of local cultural events for the tourism business in the Kudawa conservation center. The TAI, which accounted to be 1.27 and monthly evolution of HPI revealed that congestion can be occurred in the Sinharaja rainforest during peak season. The results provide useful information to any party involved with tourism planning anywhere, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.
Abstract: Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.
Abstract: Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.
Abstract: Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+
Abstract: The design of fish processing equipment greatly impacts how easy the cleaning process for the equipment is. This is a critical issue in fish processing, as cleaning of fish processing equipment is a task that is both costly and time consuming, in addition to being very important with regards to product quality. Even more, poorly cleaned equipment could in the worst case lead to contaminated product from which consumers could get ill. This paper will elucidate how equipment design changes could improve the work for the cleaners and saving money for the fish processing facilities by looking at a case for product design improvements. The design of fish processing equipment largely determines how easy it is to clean. “Design for cleaning” is the new hype in the industry and equipment where the ease of cleaning is prioritized gets a competitive advantage over equipment in which design for cleaning has not been prioritized. Design for cleaning is an important research area for equipment manufacturers. SeaSide AS is doing continuously improvements in the design of their products in order to gain a competitive advantage. The focus in this paper will be conveyors for internal logistic and a product called the “electro stunner” will be studied with regards to “Design for cleaning”. Often together with SeaSide’s customers, ideas for new products or product improvements are sketched out, 3D-modelled, discussed, revised, built and delivered. Feedback from the customers is taken into consideration, and the product design is revised once again. This loop was repeated multiple times, and led to new product designs. The new designs sometimes also cause the manufacturing processes to change (as in going from bolted to welded connections). Customers report back that the concrete changes applied to products by SeaSide has resulted in overall more easily cleaned equipment. These changes include, but are not limited to; welded connections (opposed to bolted connections), gaps between contact faces, opening up structures to allow cleaning “inside” equipment, and generally avoiding areas in which humidity and water may gather and build up. This is important, as there will always be bacteria in the water which will grow if the area never dries up. The work of creating more cleanable design is still ongoing, and will “never” be finished as new designs and new equipment will have their own challenges.
Abstract: In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.
Abstract: The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.
Abstract: The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.
Abstract: The effectiveness of microchannels in enhancing heat
transfer has been demonstrated in the semiconductor industry. In
order to tap the microscale heat transfer effects into macro
geometries, overcoming the cost and technological constraints,
microscale passages were created in macro geometries machined
using conventional fabrication methods. A cylindrical insert was
placed within a pipe, and geometrical profiles were created on the
outer surface of the insert to enhance heat transfer under steady-state
single-phase liquid flow conditions. However, while heat transfer
coefficient values of above 10 kW/m2·K were achieved, the heat
transfer enhancement was accompanied by undesirable pressure drop
increment. Therefore, this study aims to address the high pressure
drop issue using Constructal theory, a universal design law for both
animate and inanimate systems. Two designs based on Constructal theory were developed to study
the effectiveness of Constructal features in reducing the pressure drop
increment as compared to parallel channels, which are commonly
found in microchannel fabrication. The hydrodynamic and heat
transfer performance for the Tree insert and Constructal fin (Cfin)
insert were studied using experimental methods, and the underlying
mechanisms were substantiated by numerical results. In technical
terms, the objective is to achieve at least comparable increment in
both heat transfer coefficient and pressure drop, if not higher
increment in the former parameter. Results show that the Tree insert improved the heat transfer
performance by more than 16 percent at low flow rates, as compared
to the Tree-parallel insert. However, the heat transfer enhancement
reduced to less than 5 percent at high Reynolds numbers. On the
other hand, the pressure drop increment stayed almost constant at 20
percent. This suggests that the Tree insert has better heat transfer
performance in the low Reynolds number region. More importantly,
the Cfin insert displayed improved heat transfer performance along
with favourable hydrodynamic performance, as compared to Cfinparallel
insert, at all flow rates in this study. At 2 L/min, the
enhancement of heat transfer was more than 30 percent, with 20
percent pressure drop increment, as compared to Cfin-parallel insert.
Furthermore, comparable increment in both heat transfer coefficient
and pressure drop was observed at 8 L/min. In other words, the Cfin
insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is
effective in reducing the increment in pressure drop relative to heat
transfer enhancement. Optimising the geometries of the Constructal
fins is therefore the potential future study in achieving a bigger stride
in energy efficiency at much lower costs.
Abstract: The occurrences of precipitation, also commonly
referred as rain, in the form of "convective" and "stratiform" have
been identified to exist worldwide. In this study, the radar return
echoes or known as reflectivity values acquired from radar scans
have been exploited in the process of classifying the type of rain
endured. The investigation use radar data from Malaysian
Meteorology Department (MMD). It is possible to discriminate the
types of rain experienced in tropical region by observing the vertical
characteristics of the rain structure. .Heavy rain in tropical region
profoundly affects radiowave signals, causing transmission
interference and signal fading. Required wireless system fade margin
depends on the type of rain. Information relating to the two
mentioned types of rain is critical for the system engineers and
researchers in their endeavour to improve the reliability of
communication links. This paper highlights the quantification of
percentage occurrences over one year period in 2009.
Abstract: Linear stability analysis of double diffusive convection
in a horizontal porous layer saturated with fluid is examined by
considering the effects of viscous dissipation, concentration based
internal heat source and vertical throughflow. The basic steady
state solution for Governing equations is derived. Linear stability
analysis has been implemented numerically by using shooting
and Runge-kutta methods. Critical thermal Rayleigh number Rac
is obtained for various values of solutal Rayleigh number Sa,
vertical Peclet number Pe, Gebhart number Ge, Lewis number
Le and measure of concentration based internal heat source
γ. It is observed that Ge has destabilizing effect for upward
throughflow and stabilizing effect for downward throughflow. And
γ has considerable destabilizing effect for upward throughflow and
insignificant destabilizing effect for downward throughflow.
Abstract: An investigation has been presented to analyze the
effect of internal heat source on the onset of Hadley-Prats flow in
a horizontal fluid saturated porous medium. We examine a better
understanding of the combined influence of the heat source and mass
flow effect by using linear stability analysis. The resultant eigenvalue
problem is solved by using shooting and Runga-Kutta methods for
evaluate critical thermal Rayleigh number with respect to various
flow governing parameters. It is identified that the flow is switch from
stabilizing to destabilizing as the horizontal thermal Rayleigh number
is enhanced. The heat source and mass flow increases resulting a
stronger destabilizing effect.
Abstract: The aim of the current study was to develop and
validate a Response to Stressful Situations Scale (RSSS) for the
Portuguese population. This scale assesses the degree of stress
experienced in scenarios that can constitute positive, negative and
more neutral stressors, and also describes the physiological,
emotional and behavioral reactions to those events according to their
intensity. These scenarios include typical stressor scenarios relevant
to patients with schizophrenia, which are currently absent from most
scales, assessing specific risks that these stressors may bring on
subjects, which may prove useful in non-clinical and clinical
populations (i.e. Patients with mood or anxiety disorders,
schizophrenia). Results from Principal Components Analysis and
Confirmatory Factor Analysis of two adult samples from general
population allowed to confirm a three-factor model with good fit
indices: χ2 (144)= 370.211, p = 0.000; GFI = 0.928; CFI = 0.927; TLI =
0.914, RMSEA = 0.055, P(rmsea ≤0.005) = .096; PCFI = .781.
Further data analysis of the scale revealed that RSSS is an adequate
assessment tool of stress response in adults to be used in further
research and clinical settings, with good psychometric characteristics,
adequate divergent and convergent validity, good temporal stability
and high internal consistency.
Abstract: In this work, two fermentations at different
temperatures (25 and 30ºC), with cell recycling, were accomplished
to produce ethanol, using a mix of commercial substrates, xylose
(70%) and glucose (30%), as organic source for Scheffersomyces
stipitis. Five consecutive fermentations of 80 g L-1 (1º, 2º and 3º
recycles), 96 g L-1 (4º recycle) and 120 g L-1 (5º recycle)reduced
sugars led to a final maximum ethanol concentration of 17.2 and 34.5
g L-1, at 25 and 30ºC, respectively. Glucose was the preferred
substrate; moreover xylose startup degradation was initiated after a
remaining glucose presence in the medium. Results showed that yeast
acid treatment, performed before each cycle, provided improvements
on cell viability, accompanied by ethanol productivity of 2.16 g L-1 h-
1 at 30ºC. A maximum 36% of xylose was retained in the
fermentation medium and after five-cycle fermentation an ethanol
yield of 0.43 g ethanol/g sugars was observed. S. stipitis fermentation
capacity and tolerance showed better results at 30ºC with 83.4% of
theoretical yield referenced on initial biomass.
Abstract: In this paper, effect of marginal quality groundwater
on yield of cotton crop and soil salinity was studied. In this
connection, three irrigation treatments each with four replications
were applied. These treatments were i) use of canal water (T1), ii) use
of marginal quality groundwater from tubewell (T2), and iii)
conjunctive use by mixing with the ratio of 1:1 of canal water and
marginal quality tubewell water (T3).
Water was applied to the crop cultivated in Kharif season 2011; its
quantity has been measured using cut-throat flume. Total 11 watering
each of 50 mm depth have been applied from 20th April to 20th July,
2011. Further, irrigations were stopped due to monsoon rainfall up to
crop harvesting.
Maximum crop yield (seed cotton) was observed under T1 which
was 1,517 kg/ha followed by T3 (mixed canal and tubewell water)
having 1009 kg/ha and T2 i.e. marginal quality groundwater having
709 kg/ha. This concludes that crop yield in T2 and T3 in comparison
to T1was reduced by about 53 and 30% respectively.
It has been observed that yield of cotton crop is below potential
limit for three treatments due to unexpected rainfall at the time of full
flowering season; thus the yield was adversely affected.
However, salt deposition in soil profiles was not observed that is
due to leaching effect of heavy rainfall occurred during monsoon
season.
Abstract: Two micromechanical models for 3D smart composite
with embedded periodic or nearly periodic network of generally
orthotropic reinforcements and actuators are developed and applied to
cubic structures with unidirectional orientation of constituents.
Analytical formulas for the effective piezothermoelastic coefficients
are derived using the Asymptotic Homogenization Method (AHM).
Finite Element Analysis (FEA) is subsequently developed and used
to examine the aforementioned periodic 3D network reinforced smart
structures. The deformation responses from the FE simulations are
used to extract effective coefficients. The results from both
techniques are compared. This work considers piezoelectric materials
that respond linearly to changes in electric field, electric
displacement, mechanical stress and strain and thermal effects. This
combination of electric fields and thermo-mechanical response in
smart composite structures is characterized by piezoelectric and
thermal expansion coefficients. The problem is represented by unitcell
and the models are developed using the AHM and the FEA to
determine the effective piezoelectric and thermal expansion
coefficients. Each unit cell contains a number of orthotropic
inclusions in the form of structural reinforcements and actuators.
Using matrix representation of the coupled response of the unit cell,
the effective piezoelectric and thermal expansion coefficients are
calculated and compared with results of the asymptotic
homogenization method. A very good agreement is shown between
these two approaches.