Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies

This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.

Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil

Foundation differential settlement and supported structure tilting are an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers, and helical piers, jet grouted mortar columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with the limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, the micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: 1. Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. 2. For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in the slow rate. 3. If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. 4. Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.

Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100nm Technologies

As the Silicon oxide scaled down in MOSFET technology to few nanometers, gate Direct Tunneling (DT) in Floating gate (FGMOSFET) devices has become a major concern for analog designers. FGMOSFET has been used in many low-voltage and low-power applications, however, there is no accurate model that account for DT gate leakage in nano-scale. This paper studied and analyzed different simulation models for FGMOSFET using TSMC 90-nm technology. The simulation results for FGMOSFET cascade current mirror shows the impact of DT on circuit performance in terms of current and voltage without the need for fabrication. This works shows the significance of using an accurate model for FGMOSFET in nan-scale technologies.

Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. The effects of different operating conditions, including various inlet velocities (Vin= 1, 3, 5 m/s), inlet temperatures (Tgas = 450, 550, 650K) and different fin height (0 to 150 mm) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method

In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occured in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.

Effects of Cultivars, Growing and Storage Environments on Quality of Tomato

The postharvest quality management of tomatoes is important to limit the amount of losses that occur due to deterioration between harvest and consumption. This study was undertaken to investigate the effects of pre- and postharvest integrated agrotechnologies, involving greenhouse microclimate and postharvest storage conditions, on the postharvest quality attributes of four tomato cultivars. Tomato fruit firmness, colour (hue angle (h°) and L* value), pH and total soluble solids for the cultivars Bona, Star 9037, Star 9009 and Zeal, grown in a fan-pad evaporativelycooled and an open-ended naturally-ventilated tunnel, were harvested at the mature-green stage. The tomatoes were stored for 28 days under cold storage conditions, with a temperature of 13°C and RH of 85%, and under ambient air conditions, with a temperature of 23± 2°C and RH of 52± 4%. This study has provided information on the effect of integrated pre-harvest and postharvest agro-technologies, involving greenhouse microclimate and postharvest storage environment on the postharvest quality attributes of four of the tomato cultivars in South Africa. NVT-grown tomatoes retained better textural qualities, but ripened faster by changing from green to red faster, although these were reduced under cold storage conditions. FPVT-grown tomatoes had lower firmness, but ripened slowly with higher colour attributes. With cold storage conditions, the firmness of FPVT-grown tomatoes was maintained. Cultivar Bona firmness and colour qualities depreciated the fastest, but it had higher TSS content and lower pH values. Star 9009 and Star 9037 presented better quality, by retaining higher firmness and ripening slowly, but they had the lowest TSS contents and high pH values, especially Star 9037. Cold storage improved the firmness of tomato cultivars with poor textural quality and faster colour changes.

Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10% wt) in presence of superplasticizer (0.5% wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel- Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube

Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios.

Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Some Issues with Extension of an HPC Cluster

Homemade HPC clusters are widely used in many small labs, because they are easy to build and cost-effective. Even though incremental growth is an advantage of clusters, it results in heterogeneous systems anyhow. Instead of adding new nodes to the cluster, we can extend clusters to include some other Internet servers working independently on the same LAN, so that we can make use of their idle times, especially during the night. However extension across a firewall raises some security problems with NFS. In this paper, we propose a method to solve such a problem using SSH tunneling, and suggest a modified structure of the cluster that implements it.

Rock Thickness Measurement by Using Self-Excited Acoustical System

The knowledge about rock layers thickness,especially above drilled mining pavements is crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-excited Acoustical System is presentedin the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rocklayer. The idea is to find two resonance frequencies of the self-exited system,which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Construction Procedures Evaluation of Three Adjacent Tunnels and Excavation Step Effects

Since, both the relative position of tunnels and the construction procedure affect the soil movement and internal forces in the lining, it is of major concern to study the influence of these factors on the tunnel design. Construction procedures of tunnels have considerable effects on the magnitude of surface movements and lining stresses. This paper describes numerical analysis of construction procedure of a three adjacent shallow tunnels at high groundwater levels using the commercial finite difference software (FLAC-3D). The aim of this study is to determinate the most suitable construction procedure for the three tunnels and the optimum excavation step in Tehran Metro tunnels in order to optimize the surface settlements and lining stresses.

Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets (The Development of Shield Switching Type Micro-Tunneling Method and the Introduction of Construction Examples)

In recent years, a reconstruction project for sewer  pipelines has been progressing in Japan with the aim of renewing old  sewer culverts. However, it is difficult to secure a sufficient base area  for shafts in an urban area because many streets are narrow with a  complex layout. As a result, construction in such urban areas is  generally very demanding.  In urban areas, there is a strong requirement for a safe, reliable and  economical construction method that does not disturb the public’s  daily life and urban activities. With this in mind, we developed a new  construction method called the “shield switching type micro-tunneling  method,” which integrates the micro-tunneling method and shield  method.  In this method, pipeline is constructed first for sections that are  gently curved or straight using the economical micro-tunneling  method, and then the method is switched to the shield method for  sections with a sharp curve or a series of curves without establishing  an intermediate shaft.  This paper provides the information, features and construction  examples of this newly developed method.  

Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks

In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.

Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence

This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75mm), (ii) small square perforated grid (mesh size 14. and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Reynolds numbers does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number, below which the scaling breaks down, is around 25.

Back Analysis of Tehran Metro Tunnel Construction Using FLAC-3D

An important aspect of planning for shallow tunneling under urban areas is the determination of likely surface movements and interaction with existing structures. Back analysis of built tunnels that their settlements magnitude is available, could aid the designers to have a more accuracy in future projects. In this paper, one single Tehran Metro Tunnel (at west of Hor square, Jang University Street) was selected. At first, surface settlements of this tunnel were measured in situ. Then this tunnel was modeled using the commercial finite deference software FLAC-3D. Finally, Results of modeling and in situ measurements compared for verification.

Influence of Vortex Generator on Flow Behavior of Air Stream

  This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.