Expectation about Teamwork to Build a Knowledge Management System

Gurus of the Classical Management School (like Taylor, Fayol and Ford) had an opinion that work must be delegated to the individual and the individual has to be instructed, his work assessed and paid based on individual performance. The theories of the Human Relations School have changed this mentality regarding the concept of groups. They came to the conclusion that the influence of groups greatly affects the behaviour and performance of its members. Group theories today are characterized by problem-solving teams and self-managing groups authorized to make decisions and execute; professional communities also play an important role during the operation of knowledge management systems. In this theoretical research we try to find answers to a question: what kind of characteristics (professional competencies, personal features, etc.) a successful team needs to manage a change to operate a knowledge management system step by step.

Landscape Data Transformation: Categorical Descriptions to Numerical Descriptors

Categorical data based on description of the agricultural landscape imposed some mathematical and analytical limitations. This problem however can be overcome by data transformation through coding scheme and the use of non-parametric multivariate approach. The present study describes data transformation from qualitative to numerical descriptors. In a collection of 103 random soil samples over a 60 hectare field, categorical data were obtained from the following variables: levels of nitrogen, phosphorus, potassium, pH, hue, chroma, value and data on topography, vegetation type, and the presence of rocks. Categorical data were coded, and Spearman-s rho correlation was then calculated using PAST software ver. 1.78 in which Principal Component Analysis was based. Results revealed successful data transformation, generating 1030 quantitative descriptors. Visualization based on the new set of descriptors showed clear differences among sites, and amount of variation was successfully measured. Possible applications of data transformation are discussed.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process

The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.

The Effect of Variable Incubation Temperatures on Hatchability and Survival of Goldlined Seabream, Rhabdosargus sarba (Forsskål,1775) Larvae

The effect of varying holding temperature on hatching success, occurrence of deformities and mortality rates were investigated for goldlined seabream eggs. Wild broodstock (600 g) were stocked at a 2:1 male-female ratio in a 2 m3 fiberglass tank supplied with filtered seawater (37 g L-1 salinity, temp. range 24±0.5 oC [day] and 22±1 oC [night], DO2 in excess of 5.0mg L-1). Females were injected with 200 IU kg-1 HCG between 08.00 and 10.00 h and returned to tanks to spawn following which eggs were collected by hand using a 100μm net. Fertilized eggs at the gastrulation stage (120 L-1) were randomly placed into one of 12 experimental 6 L aerated (DO2 5 mg L-1) plastic containers with water temperatures maintained at 24±0.5 oC (ambient), 26±0.5 oC, 28± 0.5 oC and 30±0.5 oC using thermostats. Each treatment was undertaken in triplicate using a 12:12 photophase:scotophase photoperiod. No differences were recorded between eggs reared at 24 and 26 oC with respect to viability, deformity, mortality or unhatched egg rates. Increasing temperature reduced the number of viable eggs with those at 30 oC returning poorest performance (P < 0.05). Mortality levels were lowest for eggs incubated at 24 and 26 oC. The greatest level of deformities recorded was that for eggs reared at 28 oC.

Biomass and Pigment Production by Monascus during Miniaturized Submerged Culture on Adlay

Three reactor types were explored and successfully used for pigment production by Monascus: shake flasks, and shaken and stirred miniaturized reactors. Also, the use of dielectric spectroscopy for the on-line measurement of biomass levels was explored. Shake flasks gave good pigment yields, but scale up is difficult, and they cannot be automated. Shaken bioreactors were less successful with pigment production than stirred reactors. Experiments with different impeller speeds in different volumes of liquid in the reactor confirmed that this is most likely due oxygen availability. The availability of oxygen appeared to affect biomass levels less than pigment production; red pigment production in particular needed very high oxygen levels. Dielectric spectroscopy was effectively used to continuously measure biomass levels during the submerged fungal fermentation in the shaken and stirred miniaturized bioreactors, despite the presence of the solid substrate particles. Also, the capacitance signal gave useful information about the viability of the cells in the culture.

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.

Factors of Successful Wooden Furniture Design Process

This study systemizes processes and methods in wooden furniture design that contains uniqueness in function and aesthetics. The study was done by research and analysis for designer-s consideration factors that affect function and production. Therefore, the study result indicates that such factors are design process (planning for design, product specifications, concept design, product architecture, industrial design, production), design evaluation as well as wooden furniture design dependent factors i.e. art (art style; furniture history, form), functionality (the strength and durability, area place, using), material (appropriate to function, wood mechanical properties), joints, cost, safety, and social responsibility. Specifically, all aforementioned factors affect good design. Resulting from direct experience gained through user-s usage, the designer must design the wooden furniture systemically and effectively. As a result, this study selected dinning armchair as a case study with all involving factors and all design process stated in this study.

Classification of Causes and Effects of Uploading and Downloading of Pirated Film Products

This paper covers various aspects of the Internet film piracy. In order to successfully deal with this matter, it is needed to recognize and explain various motivational factors related to film piracy. Thus, this study proposes groups of economical, sociopsychological and other factors that could motivate individuals to engage in pirate activities. The paper also studies the interactions between downloaders and uploaders and offers the causality of the motivational factors and its effects on the film industry. Moreover, the study also focuses on proposed scheme of relations of downloading movies and the possible effect on box office revenues.

Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement

This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.

Toward Integrative Stormwater Design in Urban Spaces

The design requirements for successful human accommodation in urban spaces are well known; and the range of facilities available for meeting urban water quality and quantity requirements is also well established. Their competing requirements must be reconciled in order for urban spaces to be successful for both. This paper outlines the separate human and water imperatives and their interactions in urban spaces. Stormwater management facilities- relative potential contributions to urban spaces are contrasted, and design choices for achieving those potentials are described. This study uses human success of urban space as the evaluative criterion of stormwater amenity: human values call on stormwater facilities to contribute to successful human spaces. Placing water-s contribution under the overall idea of successful urban space is an evolution from previous subjective evaluations. The information is based on photographs and notes from approximately 1,000 stormwater facilities and urban sites collected during the last 35 years in North America and overseas, and the author-s experience on multi-disciplinary design teams. This conceptual study combines the disciplinary roles of engineering, landscape architecture, and sociology in effecting successful urban design.

Analysis of Sequence Moves in Successful Chess Openings Using Data Mining with Association Rules

Chess is one of the indoor games, which improves the level of human confidence, concentration, planning skills and knowledge. The main objective of this paper is to help the chess players to improve their chess openings using data mining techniques. Budding Chess Players usually do practices by analyzing various existing openings. When they analyze and correlate thousands of openings it becomes tedious and complex for them. The work done in this paper is to analyze the best lines of Blackmar- Diemer Gambit(BDG) which opens with White D4... using data mining analysis. It is carried out on the collection of winning games by applying association rules. The first step of this analysis is assigning variables to each different sequence moves. In the second step, the sequence association rules were generated to calculate support and confidence factor which help us to find the best subsequence chess moves that may lead to winning position.

Do Cultural Differences in Successful ERP Implementations Exist?

Using a methodology grounded in business process change theory, we investigate the critical success factors that affect ERP implementation success in United States and India. Specifically, we examine the ERP implementation at two case study companies, one in each country. Our findings suggest that certain factors that affect the success of ERP implementations are not culturally bound, whereas some critical success factors depend on the national culture of the country in which the system is being implemented. We believe that the understanding of these critical success factors will deepen the understanding of ERP implementations and will help avoid implementation mistakes, thereby increasing the rate of success in culturally different contexts. Implications of the findings and future research directions for both academicians and practitioners are also discussed.

Kinetic Spectrophotometric Determination of Ramipril in Commercial Dosage Forms

This paper presents a simple and sensitive kinetic spectrophotometric method for the determination of ramipril in commercial dosage forms. The method is based on the reaction of the drug with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethylsulfoxide (DMSO) at 100 ± 1ºC. The reaction is followed spectrophotometrically by measuring the rate of change of the absorbance at 420 nm. Fixed-time (ΔA) and equilibrium methods are adopted for constructing the calibration curves. Both the calibration curves were found to be linear over the concentration ranges 20 - 220 μg/ml. The regression analysis of calibration data yielded the linear equations: Δ A = 6.30 × 10-4 + 1.54 × 10-3 C and A = 3.62 × 10-4 + 6.35 × 10-3 C for fixed time (Δ A) and equilibrium methods, respectively. The limits of detection (LOD) for fixed time and equilibrium methods are 1.47 and 1.05 μg/ml, respectively. The method has been successfully applied to the determination of ramipril in commercial dosage forms. Statistical comparison of the results shows that there is no significant difference between the proposed methods and Abdellatef-s spectrophotometric method.

Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS

Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.

Geospatial Network Analysis Using Particle Swarm Optimization

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

The Effect of Leadership Styles on Continuous Improvement Teams

This research explorers the relationship between leadership style and continuous improvement (CI) teams. CI teams have several features that are not always found in other types of teams, including multi-functional members, short time period for performance, positive and actionable results, and exposure to senior leadership. There is no one best style of leadership for these teams. Instead, it is important to select the best leadership style for the situation. The leader must have the flexibility to change styles and the skill to use the chosen style effectively in order to ensure the team’s success.

A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix

This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.

Classifying of Maize Inbred Lines into Heterotic Groups using Diallel Analysis

The selection of parents and breeding strategies for the successful maize hybrid production will be facilitated by heterotic groupings of parental lines and determination of combining abilities of them. Fourteen maize inbred lines, used in maize breeding programs in Iran, were crossed in a diallel mating design. The 91 F1 hybrids and the 14 parental lines were studied during two years at four locations of Iran for investigation of combining ability of gentypes for grain yield and to determine heterotic patterns among germplasm sources, using both, the Griffing-s method and the biplot approach for diallel analysis. The graphical representation offered by biplot analysis allowed a rapid and effective overview of general combining ability (GCA) and specific combining ability (SCA) effects of the inbred lines, their performance in crosses, as well as grouping patterns of similar genotypes. GCA and SCA effects were significant for grain yield (GY). Based on significant positive GCA effects, the lines derived from LSC could be used as parent in crosses to increase GY. The maximum best- parent heterosis values and highest SCA effects resulted from crosses B73 × MO17 and A679 × MO17 for GY. The best heterotic patterns were LSC × RYD, which would be potentially useful in maize breeding programs to obtain high-yielding hybrids in the same climate of Iran.

Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.