Cd2+ Ions Removal from Aqueous Solutions Using Alginite

Alginite has been evaluated as an efficient pollution control material. In this paper, alginite from maar Pinciná (SR) for removal of Cd2+ ions from aqueous solution was studied. The potential sorbent was characterized by X-ray fluorescence analysis (RFA) analysis, Fourier transform infrared spectral analysis (FT-IR) and specific surface area (SSA) was also determined. The sorption process was optimized from the point of initial cadmium concentration effect and effect of pH value. The Freundlich and Langmuir models were used to interpret the sorption behavior of Cd2+ ions, and the results showed that experimental data were well fitted by the Langmuir equation. Alginite maximal sorption capacity (Qmax) for Cd2+ ions calculated from Langmuir isotherm was 34 mg/g. Sorption process was significantly affected by initial pH value in the range from 4.0-7.0. Alginite is a comparable sorbent with other materials for toxic metals removal. 

Batch and Continuous Packed Column Studies Biosorption by Yeast Supported onto Granular Pozzolana

The removal of chromium by living yeast biomass immobilized onto pozzolana was studied. The results obtained in batch experiments indicate that the immobilized yeast on to pozzolana is a excellent biosorbent of Cr(V) with a good removal rates of 85–90%. The initial concentration solution and agitation speed affected Cr(V) removal. The batch studies data were described using the Freundlich and Langmuir models, but the best fit was obtained with Langmuir model. The breakthrough curve from the continuous flow studies shows that immobilized yeast in the fixed-bed column is capable of decreasing Cr(VI) concentration from 15mg/l to a adequate level. 

Decolorization and COD Removal of Palm Oil Mill Wastewater by Electrocoagulation

The objective of this study is to investigate the performance of the electrocoagulation process for color and COD removal in palm oil wastewater using a 10 L batch reactor. Iron was used as electrodes and the distance between electrodes was 2 cm. The effects of operating parameters: current voltage (6, 12 and 18 volt), reaction time (5, 15, 30, 45 and 60 min) and initial pH (4 and 9) of treatment efficiency were examine. The result showed that decolorization and COD removal efficiency increased with the increase in current voltage and reaction time. The proper condition for decolorization achieved at initial pH 4 and 9 were current voltage of 12 volt, reaction time 30 min. The decolorization efficiency reached 90.4% and 88.9%, respectively. COD removal was achiveved at current voltage 12 volt, reaction time 15 min. COD removal efficiency was 89.2 % and 83.0%, respectively. From the results, to show electrocoagulation process can treat palm oil mill wastewater in both acidic and basic condition at high efficiency for color and COD removal. Consequently, electrocoagulation process can be used or applied as a post-treatment step to improve the quality of the final discharge in term of color and residual COD removal.

Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).

Treatment of Paper and Pulp Mill Effluent by Coagulation

The pulp and paper mill effluent is one of the high polluting effluent amongst the effluents obtained from polluting industries. All the available methods for treatment of pulp and paper mill effluent have certain drawbacks. The coagulation is one of the cheapest process for treatment of various organic effluents. Thus, the removal of chemical oxygen demand (COD) and colour of paper mill effluent is studied using coagulation process. The batch coagulation process was performed using various coagulants like: aluminium chloride, poly aluminium chloride and copper sulphate. The initial pH of the effluent (Coagulation pH) has tremendous effect on COD and colour removal. Poly aluminium chloride (PAC) as coagulant reduced COD to 84 % and 92 % of colour was removed at an optimum pH 5 and coagulant dose of 8 ml l-1. With aluminium chloride at an optimum pH = 4 and coagulant dose of 5 g l-1, 74 % COD and 86 % colour removal were observed. The results using copper sulphate as coagulant (a less commercial coagulant) were encouraging. At an optimum pH 6 and mass loading of 5 g l-1, 76 % COD reduction and 78 % colour reduction were obtained. It was also observed that after addition of coagulant, the pH of the effluent decreases. The decrease in pH was highest for AlCl3, which was followed by PAC and CuSO4. Significant amount of COD reductions was obtained by coagulation process. Since the coagulation process is the first stage for treatment of effluent and some of the coagulant cations usually remain in the treated effluents. Thus, cation like copper may be one of the good catalyst for second stage of treatment process like wet oxidation. The copper has been found to be good oxidation catalyst then iron and aluminum.

Artifacts in Spiral X-ray CT Scanners: Problems and Solutions

Artifact is one of the most important factors in degrading the CT image quality and plays an important role in diagnostic accuracy. In this paper, some artifacts typically appear in Spiral CT are introduced. The different factors such as patient, equipment and interpolation algorithm which cause the artifacts are discussed and new developments and image processing algorithms to prevent or reduce them are presented.

Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study

This research aimed at investigating the Cr (III), Cd (II) and Pb (II) removal efficiencies by using the newly synthesized metal oxides/ polyethersulfone (PES), Al2O3/PES and ZrO2/PES, membranes from synthetic wastewater and exploring fouling mechanisms. A Comparative study between the removal efficiencies of Cr (III), Cd (II) and Pb (II) from synthetic and natural wastewater by using adsorption onto agricultural by products and the newly synthesized Al2O3/PES and ZrO2/PES membranes was conducted to assess the advantages and limitations of using the metal oxides/PES membranes for heavy metals removal. The results showed that about 99 % and 88 % removal efficiencies were achieved by the tested membranes for Pb (II) and Cr (III), respectively.

The Effect of Body Condition Score on Hormonal and Vaginal Histological Changes During Estrus of Synchronized Etawah Cross Bred Does

Eight Etawah cross bred does were divided into two groups based on body condition score (BCS). Group I (BSC 2, body weight 25-30 kg; n = 4), and Group II (BSC 3, body weight, 35-40 kg, n=4). All does received intravaginal controlled internal drug release devices (CIDR) for 10 days, and a prostaglandin F2α at 48 h before CIDR removal. Estrus detection was carried out using vasectomized buck. Vaginal epithelium was taken to determine estrus cycle. Blood samples were taken every 3-6 hours, started from moment of CIDR removal until the end of estrus. The results showed vaginal histological indicated estrus occurred at the hours of 25 to 60 and 30 to 70 post CIDR removal in BCS 2 and 3, respectively. Progesterone peak of BCS 2 and BCS 3 were 0.18±0.31 and 0.48±0.31 ng/mL on the hour 0 post CIDR removal. Estradiol -17ß peak of each group was 53.25±35.08 and 89.91±92.84 pg/mL at 48 post CIDR removal. LH surge only occurred on BCS 3 groups, the LH concentrations were 9.9± 9.1; 4.5± 4.0; and 18.2± 9.1 ng/mL at 45, 48 and 51 hours post CIDR removal, respectively. It was concluded that the BCS had effects on vaginal histological changes and LH surge.

Hexavalent Chromium Removal from Aqueous Solutions by Adsorption onto Synthetic Nano Size ZeroValent Iron (nZVI)

The present work was conducted for the synthesis of nano size zerovalent iron (nZVI) and hexavalent chromium (Cr(VI)) removal as a highly toxic pollutant by using this nanoparticles. Batch experiments were performed to investigate the effects of Cr(VI), nZVI concentration, pH of solution and contact time variation on the removal efficiency of Cr(VI). nZVI was synthesized by reduction of ferric chloride using sodium borohydrid. SEM and XRD examinations applied for determination of particle size and characterization of produced nanoparticles. The results showed that the removal efficiency decreased with Cr(VI) concentration and pH of solution and increased with adsorbent dosage and contact time. The Langmuir and Freundlich isotherm models were used for the adsorption equilibrium data and the Langmuir isotherm model was well fitted. Nanoparticle ZVI presented an outstanding ability to remove Cr(VI) due to high surface area, low particle size and high inherent activity.

Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

Developments for ''Virtual'' Monitoring and Process Simulation of the Cryogenic Pilot Plant

The implementation of the new software and hardware-s technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the implementation of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system-s flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be executed, to be continued with the execution of optimization system, by choosing new and performed methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is executed with the support of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named “virtually" as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays and important role in the environment protection and durable development through new technologies, that is – the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimisation of nuclear processes is also a major driving force for economic and social development.

The Removal of As(V) from Drinking Waters by Coagulation Process using Iron Salts

In this study arsenate [As(V)] removal from drinking water by coagulation process was investigated. Ferric chloride (FeCl3.6H2O) and ferrous sulfate (FeSO4.7H2O) were used as coagulant. The effects of major operating variables such as coagulant dose (1–30 mg/L) and pH (5.5–9.5) were investigated. Ferric chloride and ferrous sulfate were found as effective and reliable coagulant due to required dose, residual arsenate and coagulant concentration. Optimum pH values for maximum arsenate removal for ferrous sulfate and ferric chloride were found as 8 and 7.5. The arsenate removal efficiency decreased at neutral and acidic pH values for Fe(II) and at the high acidic and high alkaline pH for Fe(III). It was found that the increase of coagulant dose caused a substantial increase in the arsenate removal. But above a certain ferric chloride and ferrous sulfate dosage, the increase in arsenate removal was not significant. Ferric chloride and ferrous sulfate dose above 8 mg/L slightly increased arsenate removal.

Treatment of Acid Mine Drainage Using Un- Activated Bentonite and Limestone

The use of un-activated bentonite, and un-activated bentonite blended with limestone for the treatment of acid mine drainage (AMD) was investigated. Batch experiments were conducted in a 5 L PVC reactor. Un-activated bentonite on its own did not effectively neutralize and remove heavy metals from AMD. The final pH obtained was below 4 and the metal removal efficiency was below 50% for all the metals when bentonite solid loadings of 1, 5 and 10% were used. With un-activated bentonite (1%) blended with 1% limestone, the final pH obtained was approximately 7 and metal removal efficiencies were greater than 60% for most of the metals. The Langmuir isotherm gave the best fit for the experimental data giving correlation coefficient (R2) very close to 1. Thus, it was concluded that un-activated bentonite blended with limestone is suitable for potential applications in removing heavy metals and neutralizing AMD.

Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

The Evaluation and Application of FMEA in Sepahan Oil Co

Failure modes and effects analysis (FMEA) is an effective technique for preventing potential problems and actions needed to error cause removal. On the other hand, the oil producing companies paly a critical role in the oil industry of Iran as a developing country out of which, Sepahan Oil Co. has a considerable contribution. The aim of this research is to show how FMEA could be applied and improve the quality of products at Sepahan Oil Co. For this purpose, the four liter production line of the company has been selected for investigation. The findings imply that the application of FMEA has reduced the scraps from 50000 ppm to 5000 ppm and has resulted in a 0.92 percent decrease of the oil waste.

Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash

Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.

Mechanical Evaluation of Stainless Steel and Titanium Dynamic Hip Screws for Trochanteric Fracture

This study aimed to present the mechanical performance evaluation of the dynamic hip screw (DHS) for trochanteric fracture by means of finite element method. The analyses were performed based on stainless steel and titanium implant material definitions at various stages of bone healing and including implant removal. The assessment of the mechanical performance used two parameters, von Mises stress to evaluate the strength of bone and implant and elastic strain to evaluate fracture stability. The results show several critical aspects of dynamic hip screw for trochanteric fracture stabilization. In the initial stage of bone healing process, partial weight bearing should be applied to avoid the implant failure. In the late stage of bone healing, stainless steel implant should be removed.

Energy Production Potential from Co-Digestion between Frozen Seafood Wastewater and Decanter Cake in Thailand

In this paper, a Biochemical Methane Potential (BMP) test provides a measure of the energy production potential from codigestion between the frozen seafood wastewater and the decanter cake. The experiments were conducted in laboratory-scale. The suitable ratio of the frozen seafood wastewater and the decanter cake was observed in the BMP test. The ratio of the co-digestion between the frozen seafood wastewater and the decanter cake has impacts on the biogas production and energy production potential. The best performance for energy production potential using BMP test observed from the 180 ml of the frozen seafood wastewater and 10 g of the decanter cake ratio. This ratio provided the maximum methane production at 0.351 l CH4/g TCODremoval. The removal efficiencies are 76.18%, 83.55%, 43.16% and 56.76% at TCOD, SCOD, TS and VS, respectively. The result can be concluded that the decanter cake can improve the energy production potential of the frozen seafood wastewater. The energy provides from co-digestion between frozen seafood wastewater and decanter cake approximately 19x109 MJ/year in Thailand.

Enhanced Nutrients Removal in Conventional Anaerobic Digestion Processes

One of the main challenges for one phase anaerobic digestion processes is the high concentration of NH4+ and PO4 3- ions  in the digested sludge supernatant. This project focuses on enhancing the removal of nutrients during the anaerobic digestion process through fixing both NH4+ and PO4 3- ions in the form of struvite (magnesium ammonium phosphate, MAP, MgNH4PO4.6H2O) within the anaerobic sludge. Batch anaerobic digestion tests showed that Mg2+ concentration in the range 279 – 812 mg/L had insignificant effect on CGP but incurred a slight increase in COD removal. The reactor that had soluble Mg2+:NH4+:PO43- at a molar ratio of 1.28:1:00:1:00 achieved the best performance enhancement of 8% increase in COD removal and 32% reduction in NH4+ in the reactor supernatant. Overall, the results show that there is a potential to optimise conventional anaerobic digestion such that supernatant lean in P and N, and sludge rich in nutrients are obtained. 

Development of Better Quality Low-Cost Activated Carbon from South African Pine Tree (Pinus patula) Sawdust: Characterization and Comparative Phenol Adsorption

The remediation of water resources pollution in developing countries requires the application of alternative sustainable cheaper and efficient end-of-pipe wastewater treatment technologies. The feasibility of use of South African cheap and abundant pine tree (Pinus patula) sawdust for development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs were suitable for development of better quality AC at 800oC and 47% burn-off having BET surface area (1086m2/g), micropore volume (0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to expensive commercial ACs, and suitable for water contaminants removal. The developed AC showed basic surface functionality at pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.