Abstract: Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental meso-scale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to that obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.
Abstract: Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively.
Abstract: Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.
Abstract: In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.
Abstract: In this study, natural bentonite was used as natural
clay material and samples were taken from the Kalecik district in
Ankara. In this research, bentonite is the subject of an analysis from
standpoint of assessing the basic properties of engineered barriers
with respect to the buffer material. Bentonite and sand mixtures were
prepared for tests. Some of clay minerals give relatively higher
hydraulic conductivity and lower swelling pressure. Generally,
hydraulic conductivity of these type clays is lower than
Abstract: Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.
Abstract: Among other traditional and non-traditional
additives, polymers have shown an efficient performance in the field
and improved sustainability. Polyacrylamide (PAM) is one such
additive that has demonstrated many advantages including a
reduction in permeability, an increase in durability and the provision
of strength characteristics. However, information about its effect on
the improved geotechnical characteristics is very limited to the field
performance monitoring. Therefore, a laboratory investigation was
carried out to examine the basic and engineering behaviors of three
types of soils treated with a PAM additive. The results showed an
increase in dry density and unconfined compressive strength for all
the soils. The results further demonstrated an increase in unsoaked
CBR and a reduction in permeability for all stabilized samples.
Abstract: Adequate and reliable estimates of aquifer parameters
are of utmost importance for proper management of vital
groundwater resources. At present scenario, the ground water is
polluted because of industrial waste disposed over the land and the
contaminants are transported in the aquifer from one area to another
area, which is depending on the characteristics of the aquifer and
contaminants. To know the contaminant transport, the accurate
estimation of aquifer properties is highly needed. Conventionally,
these properties are estimated through pumping tests carried out on
water wells. The occurrence and movement of ground water in the
aquifer are characteristically defined by the aquifer parameters. The
pumping (aquifer) test is the standard technique for estimating
various hydraulic properties of aquifer systems, viz., transmissivity
(T), hydraulic conductivity (K), storage coefficient (S) etc., for which
the graphical method is widely used. The study area for conducting
pumping test is Pydibheemavaram Industrial area near the coastal
belt of Srikulam, AP, India. The main objective of the present work is
to estimate the aquifer properties for developing contaminant
transport model for the study area.
Abstract: In this study, a physically-based, modeling framework was developed to predict saturated hydraulic conductivity (Ksat) dynamics in the Clear Creek Watershed (CCW), Iowa. The modeling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the Ksat field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured Ksat values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of Ksat variability in CCW due to the seasonal changes in climate and land use activities.
Abstract: Liners are made to protect the groundwater table from
the infiltration of leachate which normally carries different kinds of
toxic materials from landfills. Although these liners are engineered to
last for long period of time; unfortunately these liners fail; therefore,
toxic materials pass to groundwater. This paper focuses on the
changes of the hydraulic conductivity of a sand-bentonite liner due to
the infiltration of biofuel and ethanol fuel. Series of laboratory tests
were conducted in 20-cm-high PVC columns. Several compositions
of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90%
sand: 10% bentonite; and 100% sand (passed mesh #40). The
columns were subjected to extreme pressures of 40 kPa, and 100 kPa
to evaluate the transport of alternative fuels (biofuel and ethanol
fuel). For comparative studies, similar tests were carried out using
water. Results showed that hydraulic conductivity increased due to
the infiltration of alternative fuels through the liners. Accordingly,
the increase in the hydraulic conductivity showed significant
dependency on the type of liner mixture and the characteristics of the
liquid. The hydraulic conductivity of a liner (subjected to biofuel
infiltration) consisting of 5% bentonite: 95% sand under pressure of
40 kPa and 100 kPa had increased by one fold. In addition, the
hydraulic conductivity of a liner consisting of 10% bentonite: 90%
sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel
had increased by three folds. On the other hand, the results obtained
by water infiltration under 40 kPa showed lower hydraulic
conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite:
95% sand, and 10% bentonite: 90% sand, respectively. Similarly,
under 100 kPa, the hydraulic conductivities were 2.30×10-5 and
1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90%
sand, respectively.
Abstract: This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were a controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot.
The significant differences (ANOVA, P
Abstract: A two-dimensional thin-walled capsule of a flexible
semi-permeable membrane is adhered onto a rigid planar substrate
under adhesive forces (derived from a potential function) in the
presence of osmosis across the membrane. The capsule is immersed
in a hypotonic and diluted binary solution of a non-electrolyte
solute. The Stokes flow problem is solved by the immersed interface
method (IIM) with equal viscosities for the enclosed and
surrounding fluid of the capsule. The numerical results obtained are
verified against two simplified theoretical solutions and the
agreements are good. The osmotic inflation of the adhered capsule is
studied as a function of the solute concentration field, hydraulic
conductivity, and the initial capsule shape. Our findings indicate that
the contact length shrinks in dimension as capsule inflates in the
hypotonic medium, and the equilibrium contact length does not
depend on the hydraulic conductivity of the membrane and the
initial shape of the capsule.
Abstract: Saturated hydraulic conductivity is one of the soil
hydraulic properties which is widely used in environmental studies
especially subsurface ground water. Since, its direct measurement is
time consuming and therefore costly, indirect methods such as
pedotransfer functions have been developed based on multiple linear
regression equations and neural networks model in order to estimate
saturated hydraulic conductivity from readily available soil
properties e.g. sand, silt, and clay contents, bulk density, and organic
matter. The objective of this study was to develop neural networks
(NNs) model to estimate saturated hydraulic conductivity from
available parameters such as sand and clay contents, bulk density,
van Genuchten retention model parameters (i.e. r
θ , α , and n) as well
as effective porosity. We used two methods to calculate effective
porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s
θ is
saturated water content, FC θ is water content retained at -33 kPa
matric potential, and inf θ is water content at the inflection point.
Total of 311 soil samples from the UNSODA database was divided
into three groups as 187 for the training, 62 for the validation (to
avoid over training), and 62 for the test of NNs model. A commercial
neural network toolbox of MATLAB software with a multi-layer
perceptron model and back propagation algorithm were used for the
training procedure. The statistical parameters such as correlation
coefficient (R2), and mean square error (MSE) were also used to
evaluate the developed NNs model. The best number of neurons in
the middle layer of NNs model for methods (1) and (2) were
calculated 44 and 6, respectively. The R2 and MSE values of the test
phase were determined for method (1), 0.94 and 0.0016, and for
method (2), 0.98 and 0.00065, respectively, which shows that method
(2) estimates saturated hydraulic conductivity better than method (1).
Abstract: Subgrade moisture content varies with environmental and soil conditions and has significant influence on pavement performance. Therefore, it is important to establish realistic estimates of expected subgrade moisture contents to account for the effects of this variable on predicted pavement performance during the design stage properly. The initial boundary soil suction profile for a given pavement is a critical factor in determining expected moisture variations in the subgrade for given pavement and climatic and soil conditions. Several numerical models have been developed for predicting water and solute transport in saturated and unsaturated subgrade soils. Soil hydraulic properties are required for quantitatively describing water and chemical transport processes in soils by the numerical models. The required hydraulic properties are hydraulic conductivity, water diffusivity, and specific water capacity. The objective of this paper was to determine isothermal moisture profiles in a soil fill and predict the soil moisture movement above the ground water table using a simple one-dimensional finite difference model.
Abstract: Saturated hydraulic conductivity of Soil is an
important property in processes involving water and solute flow in
soils. Saturated hydraulic conductivity of soil is difficult to measure
and can be highly variable, requiring a large number of replicate
samples. In this study, 60 sets of soil samples were collected at
Saqhez region of Kurdistan province-IRAN. The statistics such as
Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean
Bias Error (MBE) and Mean Absolute Error (MAE) were used to
evaluation the multiple linear regression models varied with number
of dataset. In this study the multiple linear regression models were
evaluated when only percentage of sand, silt, and clay content (SSC)
were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd)
were used as inputs. The R, RMSE, MBE and MAE values of the 50
dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and
12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11
and 12.92, respectively, for relationship obtained from multiple
linear regressions on data. Also the R, RMSE, MBE and MAE values
of the 10 dataset for method (SSC), were calculated 0.725, 19.62, -
9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618,
24.69, -17.37 and 22.16, respectively, which shows when number of
dataset increase, precision of estimated saturated hydraulic
conductivity, increases.
Abstract: Hydraulic conductivity is one parameter important for predicting the movement of water and contaminants dissolved in the water through the soil. The hydraulic conductivity is measured on soil samples in the lab and sometimes tests carried out in the field. The hydraulic conductivity has been related to soil particle diameter by a number of investigators. In this study, 25 set of soil samples with sand texture. The results show approximately success in predicting hydraulic conductivity from particle diameters data. The following relationship obtained from multiple linear regressions on data (R2 = 0.52): Where d10, d50 and d60, are the soil particle diameter (mm) that 10%, 50% and 60% of all soil particles are finer (smaller) by weight and Ks, saturated hydraulic conductivity is expressed in m/day. The results of regression analysis showed that d10 play a more significant role with respect to Ks, saturated hydraulic conductivity (m/day), and has been named as the effective parameter in Ks calculation.
Abstract: The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.