Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach

In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.

Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation

Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.

Application of AIMSUN Microscopic Simulation Model in Evaluating Side Friction Impacts on Traffic Stream Performance

Side friction factors can be defined as all activities taking place at the side of the road and within the traffic stream, which would negatively affect the traffic stream performance. If the effect of these factors is adequately addressed and managed, traffic stream performance and capacity could be improved. The main objective of this paper is to identify and assess the impact of different side friction factors on traffic stream performance of a hypothesized urban arterial road. Hypothetical data were assumed mainly because there is no road operating under ideal conditions, with zero side friction, in the developing countries. This is important for the creation of the base model which is important for comparison purposes. For this purpose, three essential steps were employed. Step one, a hypothetical base model was developed under ideal traffic and geometric conditions. Step two, 18 hypothetical alternative scenarios were developed including side friction factors such as on-road parking, pedestrian movement, and the presence of trucks in the traffic stream. These scenarios were evaluated for one, two, and three lane configurations and under different traffic volumes ranging from low to high. Step three, the impact of side friction, of each scenario, on speed-flow models was evaluated using AIMSUN microscopic traffic simulation software. Generally, it was found that, a noticeable negative shift in the speed flow curves from the base conditions was observed for all scenarios. This indicates negative impact of the side friction factors on free flow speed and traffic stream average speed as well as on capacity.

Assessing Traffic Calming Measures for Safe and Accessible Emergency Routes in Norrkoping City in Sweden

Most accidents occur in urban areas, and the most related casualties are vulnerable road users (pedestrians and cyclists). The traffic calming measures (TCMs) are widely used and considered to be successful in reducing speed and traffic volume. However, TCMs create unwanted effects include: noise, emissions, energy consumption, vehicle delays and emergency response time (ERT). Different vertical and horizontal TCMs have been already applied nationally (Sweden) and internationally with different impacts. It is a big challenge among traffic engineers, planners, and policy-makers to choose and priorities the best TCMs to be implemented. This study will assess the existing guidelines for TCMs in relation to safety and ERT with focus on data from Norrkoping city in Sweden. The expected results will save lives, time, and money on particularly Swedish Roads. The study will also review newly technologies and how they can improve safety and reduce ERT.

Analysis of the Operational Performance of Three Unconventional Arterial Intersection Designs: Median U-Turn, Superstreet and Single Quadrant

This paper is aimed to evaluate and compare the operational performance of three Unconventional Arterial Intersection Designs (UAIDs) including Median U-Turn, Superstreet, and Single Quadrant Intersection using real traffic data. For this purpose, the heavily congested signalized intersection of Wadi Saqra in Amman was selected. The effect of implementing each of the proposed UAIDs was not only evaluated on the isolated Wadi Saqra signalized intersection, but also on the arterial road including both surrounding intersections. The operational performance of the isolated intersection was based on the level of service (LOS) expressed in terms of control delay and volume to capacity ratio. On the other hand, the measures used to evaluate the operational performance on the arterial road included traffic progression, stopped delay per vehicle, number of stops and the travel speed. The analysis was performed using SYNCHRO 8 microscopic software. The simulation results showed that all three selected UAIDs outperformed the conventional intersection design in terms of control delay but only the Single Quadrant Intersection design improved the main intersection LOS from F to B. Also, the results indicated that the Single Quadrant Intersection design resulted in an increase in average travel speed by 52%, and a decrease in the average stopped delay by 34% on the selected corridor when compared to the corridor with conventional intersection design. On basis of these results, it can be concluded that the Median U-Turn and the Superstreet do not perform the best under heavy traffic volumes.

Microscopic Simulation of Toll Plaza Safety and Operations

The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.

Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.

Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Performance Evaluation of a ‘Priority-Controlled’ Intersection Converted to Signal-Controlled Intersection

There is a call to ensure that the issues of safety and efficient throughput are considered during design; the solutions to these issues can also be retrofitted at locations where they were not captured during design, but have become problems to road users over time. This paper adopts several methods to analyze the performance of an intersection which was formerly a ‘priority-controlled’ intersection, but has now been converted to a ‘signal-controlled’ intersection. Extensive review of literature helped form the basis for result analysis and discussion. The Ikot-Ekpene/Anagha-Ezikpe intersection, located at the heart of Umuahia was adopted as case study; considering the high traffic volume on the route. Anecdotal evidence revealed that traffic signals imposed enormous delays at the intersection, especially for traffic on the major road. The major road has arrival flow which surpasses the saturation flow obtained from modelling of the isolated signalized intersection. Similarly, there were several geometric elements that did not agree with the specific function of the road. A roundabout, particularly flower roundabout was recommended as a better traffic control measure.

Urban Corridor Management Strategy Based on Intelligent Transportation System

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Weigh-in-Motion Data Analysis Software for Developing Traffic Data for Mechanistic Empirical Pavement Design

Currently, there are few user friendly Weigh-in- Motion (WIM) data analysis softwares available which can produce traffic input data for the recently developed AASHTOWare pavement Mechanistic-Empirical (ME) design software. However, these softwares have only rudimentary Quality Control (QC) processes. Therefore, they cannot properly deal with erroneous WIM data. As the pavement performance is highly sensible to the quality of WIM data, it is highly recommended to use more refined QC process on raw WIM data to get a good result. This study develops a userfriendly software, which can produce traffic input for the ME design software. This software takes the raw data (Class and Weight data) collected from the WIM station and processes it with a sophisticated QC procedure. Traffic data such as traffic volume, traffic distribution, axle load spectra, etc. can be obtained from this software; which can directly be used in the ME design software.

Proposed Alternative System to Existing Traffic Signal System

Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Determination of Level of Service of Agrabad to CEPZ Road at Chittagong in Bangladesh

Chittagong is the commercial capital of Bangladesh. Here Agrabad is one of the most commercial activity centers of Chittagong. Due to many light industry and commercial land use, Agrabad to CEPZ road at Agrabad is the only major road of Chittagong port city which encompasses a huge number of vehicles every day. It has many junctions which distribute traffic flow in different roads. In these junctions vehicles gather at some conflict point to create traffic jam and make the performance of the road downward. This study is parallel focused on the existing level of service with traffic volume, capacity, and speed by traffic survey. After all of these analyses the performance of the road is determined with finding the factors that influences the performance.

Speed Characteristics of Mixed Traffic Flow on Urban Arterials

Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.

Travel Time Evaluation of an Innovative U-Turn Facility on Urban Arterial Roadways

Signalized intersections on high-volume arterials are often congested during peak hours, causing a decrease in through movement efficiency on the arterial. Much of the vehicle delay incurred at conventional intersections is caused by high left-turn demand. Unconventional intersection designs attempt to reduce intersection delay and travel time by rerouting left-turns away from the main intersection and replacing it with right-turn followed by Uturn. The proposed new type of U-turn intersection is geometrically designed with a raised island which provides a protected U-turn movement. In this study several scenarios based on different distances between U-turn and main intersection, traffic volume of major/minor approaches and percentage of left-turn volumes were simulated by use of AIMSUN, a type of traffic microsimulation software. Subsequently some models are proposed in order to compute travel time of each movement. Eventually by correlating these equations to some in-field collected data of some implemented U-turn facilities, the reliability of the proposed models are approved. With these models it would be possible to calculate travel time of each movement under any kind of geometric and traffic condition. By comparing travel time of a conventional signalized intersection with U-turn intersection travel time, it would be possible to decide on converting signalized intersections into this new kind of U-turn facility or not. However comparison of travel time is not part of the scope of this research. In this paper only travel time of this innovative U-turn facility would be predicted. According to some before and after study about the traffic performance of some executed U-turn facilities, it is found that commonly, this new type of U-turn facility produces lower travel time. Thus, evaluation of using this type of unconventional intersection should be seriously considered.

Web Traffic Mining using Neural Networks

With the explosive growth of data available on the Internet, personalization of this information space become a necessity. At present time with the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge and information to the end users. Discovering hidden and meaningful information about Web users usage patterns is critical to determine effective marketing strategies to optimize the Web server usage for accommodating future growth. The task of mining useful information becomes more challenging when the Web traffic volume is enormous and keeps on growing. In this paper, we propose a intelligent model to discover and analyze useful knowledge from the available Web log data.

Analysis of Impact of Land Use Regulations against Urban Spatial Structure - Centering around Shiheung City

In this paper, we analyzed the pattern of urban spatial structure of Siheung City that had been divided into two parts and presented alternative plans in order to get rid of these phenomena. Concerning patterns of urban spatial structure, we examined it through means of analyzing status of land use, population density and distribution of residence, status of distribution of main facilities, medical facilities, status of distribution of cultural facilities, distribution of land prices and traffic volume trends. The results of study revealed that status of facilities distribution and distribution of land prices, etc. were bisected by the surrounding area of former municipal office and the district of Sihwa, which were both regarded as one apex of the city divide, forming a duo-centric city. In order to get rid of this problem concerned with urban spatial structure that has been bisected, it is required that measures in order to expand facilities in Siheung City should be taken.

Roundabout Optimal Entry and Circulating Flow Induced by Road Hump

Roundabout work on the principle of circulation and entry flows, where the maximum entry flow rates depend largely on circulating flow bearing in mind that entry flows must give away to circulating flows. Where an existing roundabout has a road hump installed at the entry arm, it can be hypothesized that the kinematics of vehicles may prevent the entry arm from achieving optimum performance. Road humps are traffic calming devices placed across road width solely as speed reduction mechanism. They are the preferred traffic calming option in Malaysia and often used on single and dual carriageway local routes. The speed limit on local routes is 30mph (50 km/hr). Road humps in their various forms achieved the biggest mean speed reduction (based on a mean speed before traffic calming of 30mph) of up to 10mph or 16 km/hr according to the UK Department of Transport. The underlying aim of reduced speed should be to achieve a 'safe' distribution of speeds which reflects the function of the road and the impacts on the local community. Constraining safe distribution of speeds may lead to poor drivers timing and delayed reflex reaction that can probably cause accident. Previous studies on road hump impact have focused mainly on speed reduction, traffic volume, noise and vibrations, discomfort and delay from the use of road humps. The paper is aimed at optimal entry and circulating flow induced by road humps. Results show that roundabout entry and circulating flow perform better in circumstances where there is no road hump at entrance.

Usage-based Traffic Control for P2P Content Delivery

Recently, content delivery services have grown rapidly over the Internet. For ASPs (Application Service Provider) providing content delivery services, P2P architecture is beneficial to reduce outgoing traffic from content servers. On the other hand, ISPs are suffering from the increase in P2P traffic. The P2P traffic is unnecessarily redundant because the same content or the same fractions of content are transferred through an inter-ISP link several times. Subscriber ISPs have to pay a transit fee to upstream ISPs based on the volume of inter-ISP traffic. In order to solve such problems, several works have been done for the purpose of P2P traffic reduction. However, these existing works cannot control the traffic volume of a certain link. In order to solve such an ISP-s operational requirement, we propose a method to control traffic volume for a link within a preconfigured upper bound value. We evaluated that the proposed method works well by conducting a simulation on a 1,000-user scale. We confirm that the traffic volume could be controlled at a lower level than the upper bound for all evaluated conditions. Moreover, our method could control the traffic volume at 98.95% link usage against the target value.