Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses

With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries. 

Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants

This study is experimentally targeting to develop effective in heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity data. This is done by using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. The pairs are activated carbon powder/R-134a, activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a, at different adsorption temperatures of 25, 30, 35 and 50°C. The following is results is obtained: at adsorption temperature of 25 °C the maximum adsorption capacity is found to be 0.8352kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.1583kg/kg for activated carbon granules with R-407c. While, at adsorption temperature of 50°C the maximum adsorption capacity is found to be 0.3207kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.0609kg/kg for activated carbon granules with R-407c. Therefore, the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system.

TACS : Thermo Acoustic Cooling System

Cooling with sound is a physical phenomenon allowed by Thermo-Acoustics in which acoustic energy is transformed into a negative heat transfer, in other words: into cooling! Without needing any harmful gas, the transformation is environmentally friendly and can respond to many needs in terms of air conditioning, food refrigeration for domestic use, and cooling medical samples for example. To explore the possibilities of this cooling solution on a small scale, the TACS prototype has been designed, consisting of a low cost thermoacoustic refrigerant “pipe” able to lower the temperature by a few degrees. The obtained results are providing an interesting element for possible future of thermo-acoustic refrigeration.

Preservation of Millet Flour by Refrigeration: Changes in Total Protein and Amino Acids Composition During Storage

This work describes refrigeration effects during storage on total protein and amino acids composition of raw and processed flour of two pearl millet cultivars (Ashana and Dembi). The protein content of the whole raw flour was found to be 14.46 and 13.38% for Ashana and Dembi cultivars, respectively. Dehulling of the grains reduced the protein content to 13.38 and 12.67% for the cultivars, respectively. For both cultivars, the protein content of the whole and dehulled raw flour before and after cooking was slightly decreased when the flour was stored for 60 days even after refrigeration. The effect of refrigeration process in combination with the storage period, cooking or dehulling was found to be vary between amino acids and even between cultivars. Regardless of the storage period and processing method, the amino acids content was remained unchanged after refrigeration for both cultivars.

Performance Monitoring of the Refrigeration System with Minimum Set of Sensors

This paper describes a methodology for remote performance monitoring of retail refrigeration systems. The proposed framework starts with monitoring of the whole refrigeration circuit which allows detecting deviations from expected behavior caused by various faults and degradations. The subsequent diagnostics methods drill down deeper in the equipment hierarchy to more specifically determine root causes. An important feature of the proposed concept is that it does not require any additional sensors, and thus, the performance monitoring solution can be deployed at a low installation cost. Moreover only a minimum of contextual information is required, which also substantially reduces time and cost of the deployment process.