Controlling of Load Elevators by the Fuzzy Logic Method

In this study, a fuzzy-logic based control system was designed to ensure that time and energy is saved during the operation of load elevators which are used during the construction of tall buildings. In the control system that was devised, for the load elevators to work more efficiently, the energy interval where the motor worked was taken as the output variable whereas the amount of load and the building height were taken as input variables. The most appropriate working intervals depending on the characteristics of these variables were defined by the help of an expert. Fuzzy expert system software was formed using Delphi programming language. In this design, mamdani max-min inference mechanism was used and the centroid method was employed in the clarification procedure. In conclusion, it is observed that the system that was designed is feasible and this is supported by statistical analyses..

An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes

A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.

Relationship between Functional Gastrointestinal Disorders and Risk Factors: A Biomechanical Analysis

Functional gastrointestinal disorders (FGID) affect millions of people spread all age regardless of race and sex. Emotional stress and obesity have been associated with increased reporting of gastrointestinal (GI) symptoms, but the relationship between FGID and risk factors (emotional stress or obesity) is unclear. Our aim was to assess the changes of the mechanical characteristics on the gastrointestinal tracts of the mentally fatigued obese and normal rat models. Finally, using the physical characteristics with micro-indentation test, we made a close investigation into the relation between FGID and risk factors quantitatively.

Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences

Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.

Highly Sensitive Label Free Biosensor for Tumor Necrosis Factor

We present a label-free biosensor based on electrochemical impedance spectroscopy for the detection of proinflammatory cytokine Tumor Necrosis Factor (TNF-α). Secretion of TNF-α has been correlated to the onset of various diseases including rheumatoid arthritis, Crohn-s disease etc. Gold electrodes were patterned on a silicon substrate and self assembled monolayer of dithiobis-succinimidyl propionate was used to develop the biosensor which achieved a detection limit of ~57fM. A linear relationship was also observed between increasing TNF-α concentrations and chargetransfer resistance within a dynamic range of 1pg/ml – 1ng/ml.

Hybrid Recommender Systems using Social Network Analysis

This study proposes novel hybrid social network analysis and collaborative filtering approach to enhance the performance of recommender systems. The proposed model selects subgroups of users in Internet community through social network analysis (SNA), and then performs clustering analysis using the information about subgroups. Finally, it makes recommendations using cluster-indexing CF based on the clustering results. This study tries to use the cores in subgroups as an initial seed for a conventional clustering algorithm. This model chooses five cores which have the highest value of degree centrality from SNA, and then performs clustering analysis by using the cores as initial centroids (cluster centers). Then, the model amplifies the impact of friends in social network in the process of cluster-indexing CF.

Sex Differences in Thyroid Gland Structure of Rabbits

The aim of the present investigation was to compare sex differences in thyroid gland structure of rabbits. Five adult male and five adult female (3.1-3.5 kg body weight) New Zealand white rabbits were used in the experiment. Results showed that at light microscopic level, there was no sex difference in microscopic appearance of the thyroid glands. At electron microscopic level, however, the mitochondria and the microvilli of the follicular cells are more numerous and the Golgi complex is also more extensive in male rabbits in comparison to females. Results obtained from micrometric measurements showed that the volume density of the follicles is higher in males than in females, but the differences are not statistically significant .The volume density of epithelium and the height of follicular cells are significantly greater in males than in females and reverse is true about the volume density of interstitium (p

Improvement of Lipase Catalytic Properties by Immobilization in Hybrid Matrices

Lipases are enzymes particularly amenable for immobilization by entrapment methods, as they can work equally well in aqueous or non-conventional media and long-time stability of enzyme activity and enantioselectivity is needed to elaborate more efficient bioprocesses. The improvement of Pseudomonas fluorescens (Amano AK) lipase characteristics was investigated by optimizing the immobilization procedure in hybrid organic-inorganic matrices using ionic liquids as additives. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety are beneficial for the activity of immobilized lipase. Silanes with alkyl- or aryl nonhydrolizable groups used as precursors in combination with tetramethoxysilane could generate composites with higher enantioselectivity compared to the native enzyme in acylation reactions of secondary alcohols. The optimal effect on both activity and enantioselectivity was achieved for the composite made from octyltrimethoxysilane and tetramethoxysilane at 1:1 molar ratio (60% increase of total activity following immobilization and enantiomeric ratio of 30). Ionic liquids also demonstrated valuable properties as reaction media for the studied reactions, comparable with the usual organic solvent, hexane.

The Riemann Barycenter Computation and Means of Several Matrices

An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.

Vehicle Velocity Estimation for Traffic Surveillance System

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Determination of in Vitro Susceptibility of the Typhoid Pathogens to Synergistic Action of Euphorbia Hirta, Euphorbia Heterophylla and Phyllanthus Niruri for Possible Development of Effective Anti-Typhoid Drugs

Studies were carried out to determine the in vitro susceptibility of the typhoid pathogens to combined action of Euphorbia hirta, Euphorbia heterophylla and Phyllanthus niruri. Clinical isolates of the typhoid bacilli were subjected to susceptibility testing using agar diffusion technique and the minimum inhibitory concentration (MIC) determined with tube dilution technique. These isolates, when challenged with doses of the extracts from the three medicinal plants showed zones of inhibition as wide as 26±0.2mm, 22±0.1mm and 18±0.0mm respectively. The minimum inhibitory concentration (MIC) revealed organisms inhibited at varying concentrations of extracts: E. hirta (S. typhi 0.250mg/ml, S. paratyphi A 0.125mg/ml, S. paratyphi B 0.185mg/ml and S. paratyphi C 0.225mg/ml), E. heterophylla (S. typhi 0.280mg/ml, S. paratyphi A 0.150mg/ml, S. paratyphi B 0.200mg/ml and S. paratyphi C 0.250mg/ml) and P. niruri (S. typhi 0.150mg/ml, S. paratyphi A 0.100mg/ml, S. paratyphi B 0.115mg/ml and S. paratyphi C 0.125mg/ml). The results of the synergy between the three plants in the ration of 1:1:1 showed very low MICs for the test pathogens as follows S. typhi 0.025mg/ml, S. paratyphi A 0.080mg/ml, S. paratyphi B 0.015mg/ml and S. paratyphi C 0.10mg/ml with the diameter zone of inhibition (DZI) ranging from 35±0.2mm, 28±0.4mm, 20±0.1mm and 32±0.3mm respectively. The secondary metabolites were identified using simple methods and HPLC. Organic components such as anthroquinones, different alkaloids, tannins, 6-ethoxy-1,2,3,4-tetrahydro-2,2,4-trimethyl and steroids were identified. The prevalence of Salmonellae, a deadly infectious disease, is still very high in parts of Nigeria. The synergistic action of these three plants is very high. It is concluded that pharmaceutical companies should take advantage of these findings to develop new anti-typhoid drugs from these plants.

The Balanced Hamiltonian Cycle on the Toroidal Mesh Graphs

The balanced Hamiltonian cycle problemis a quiet new topic of graph theorem. Given a graph G = (V, E), whose edge set can be partitioned into k dimensions, for positive integer k and a Hamiltonian cycle C on G. The set of all i-dimensional edge of C, which is a subset by E(C), is denoted as Ei(C).

A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

The Impact of Germination and In Vitro Digestion on the Formation of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides from Lentil Proteins Compared to Whey Proteins

Biologically active peptides are of particular interest in food science and human nutrition because they have been shown to play several physiological roles. In vitro gastrointestinal digestion of lentil and whey proteins in this study produced high angiotensin-I converting enzyme inhibitory activity with 75.5±1.9 and 91.4±2.3% inhibition, respectively. High ACE inhibitory activity was observed in lentil after 5 days of germination (84.3±1.2%). Fractionation by reverse phase chromatography gave inhibitory activities as high as 86.3±2.0 for lentil, 94.8±1.8% for whey and 93.7±1.7% at 5th day of germination. Further purification by HPLC resulted in several inhibitory peptides with IC50 values ranging from 0.064 to 0.164 mg/ml. These results demonstrate that lentil proteins are a good source of peptides with ACE inhibitory activity that can be released by germination or gastrointestinal digestion. Despite the lower bioactivity in comparison with whey proteins, incorporation of lentil proteins in functional food formulations and natural drugs look promising.

Applying Clustering of Hierarchical K-means-like Algorithm on Arabic Language

In this study a clustering technique has been implemented which is K-Means like with hierarchical initial set (HKM). The goal of this study is to prove that clustering document sets do enhancement precision on information retrieval systems, since it was proved by Bellot & El-Beze on French language. A comparison is made between the traditional information retrieval system and the clustered one. Also the effect of increasing number of clusters on precision is studied. The indexing technique is Term Frequency * Inverse Document Frequency (TF * IDF). It has been found that the effect of Hierarchical K-Means Like clustering (HKM) with 3 clusters over 242 Arabic abstract documents from the Saudi Arabian National Computer Conference has significant results compared with traditional information retrieval system without clustering. Additionally it has been found that it is not necessary to increase the number of clusters to improve precision more.