The Impact of Germination and In Vitro Digestion on the Formation of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides from Lentil Proteins Compared to Whey Proteins

Biologically active peptides are of particular interest in food science and human nutrition because they have been shown to play several physiological roles. In vitro gastrointestinal digestion of lentil and whey proteins in this study produced high angiotensin-I converting enzyme inhibitory activity with 75.5±1.9 and 91.4±2.3% inhibition, respectively. High ACE inhibitory activity was observed in lentil after 5 days of germination (84.3±1.2%). Fractionation by reverse phase chromatography gave inhibitory activities as high as 86.3±2.0 for lentil, 94.8±1.8% for whey and 93.7±1.7% at 5th day of germination. Further purification by HPLC resulted in several inhibitory peptides with IC50 values ranging from 0.064 to 0.164 mg/ml. These results demonstrate that lentil proteins are a good source of peptides with ACE inhibitory activity that can be released by germination or gastrointestinal digestion. Despite the lower bioactivity in comparison with whey proteins, incorporation of lentil proteins in functional food formulations and natural drugs look promising.




References:
[1] Van Elswijk, D. A., Diefenbach, O., van der Berg, S., Irth, H., Tjaden,
U. R., & van der Greef, J. (2003). Rapid detection and identification of
angiotensin-converting enzyme inhibitors by on-line liquid chromatography-biochemical detection, coupled to electrospray mass
spectrometry. Journal of Chromatography A, 1020, 45-58.
[2] FitzGerald, R. J., Murray, B. A., & Walsh, D. J. (2004). Hypotensive
peptides from milk proteins. Journal of Nutrition, 134, 980S-988S.
[3] Lee, Y. -M., Skurk, T., Hennig, M., & Hauner, H. (2007). Effect of a
milk drink supplemented with whey peptides on blood pressure in
patients with mild hypertension. European Journal of Nutrition, 46, 21-
27.
[4] Lopez-Fandino, R., Otte, J., & Van Camp, J. (2006). Physiological,
chemical and technological aspects of milk-protein-derived peptides
with antihypertensive and ACE-inhibitory activity. International Dairy
Journal, 16, 1277-1293.
[5] Li, G. -H., Le, G. -W., Shi, Y. -H. & Shrestha, S. (2004). Angiotensin I-
converting enzyme inhibitory peptides derived from food proteins and
their physiological and pharmacological effects. Nutrition Research, 24,
469-486.
[6] Silva, S. V., & Malcata, F. X. (2005). Caseins as source of bioactive peptides. International Dairy Journal, 15, 1-15.
[7] Cheung, H. -S., Wang, F. -L., Ondetti, M. A., Sabo, E. F., & Cushman, D. W. (1980). Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Journal of Biological Chemistry, 255
(2), 401-405.
[8] Riordan, J. F. (2003). Angiotensin-I-converting enzyme and its relatives.
Genome Biology, 4 (8), 225-230.
[9] Korhonen, H., & Pihlanto, A., (2003). Food-derived bioactive peptides-
opportunities for designing future foods. Current Pharmaceutical Design,
9, 1297-1308.
[10] Oshima, G., Shimabukuro, H., & Nagasawa, K., (1979). Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochemistry Biophysics Acta, 566, 128-37.
[11] Matsui, T., Matsufuji, H., Seki, E., Osajima, K., Nakashima, M., &
Osajima, Y., (1993). Inhibition of angiotensin I-converting enzyme by
Bacillus licheniformis alkaline protease hydrolysates derived from
sardine muscle. Bioscience Biotechnology and Biochemistry, 57 (6),922-5.
[12] Townsend, R. R., McFadden, C. B., Ford, V., & Cadée, J. A., (2004). A
randomized, double-blind, placebo-controlled trial of casein protein
hydrolysate (C12 peptide) in human essential hypertension. American
Journal of Hypertension, 17, 1056-1058.
[13] Nakamura, Y., Yamamoto, N., Sakai, K., & Takano, T., (1995).
Antihypertensive effect of sour milk and peptides isolated from it that
are inhibitors to angiotensin I converting enzyme. Journal of Dairy Science, 78, 1253-1257.
[14] Kilara, A., & Panyam, D., (2003). Peptides from milk proteins and their
properties. Critical Reviews in Food Science and Nutrition, 43 (6), 607-633.
[15] FitzGerald, R. J., & Meisel, H., (2000). Milk protein-derived inhibitors
of angiotensin-I-converting enzyme. British Journal of Nutrition, 84
(suppl. 1), S33-S37.
[16] Graham, T. A., & Gunning, B. E. S., (1970). Localization of legumin
and vicilin in bean cotyledon cells using fluorescent antibodies. Nature,228, 81-82.
[17] Derbyshire, E., Wright, D. J. & Boulter, D., (1976). Legumin and vicilin, storage proteins of legume seeds. Phytochemistry, 15, 3-24.
[18] M├╝ntz, K., Belozersky, M. A., & Dunaevsky, Y. E., (2001). Stored proteinases and the initiation of storage protein mobilization in seeds
during germination and seedling growth. Journal of Experimental Botany, 52 (362), 1741-1752.
[19] Chrispeels, M. J., & Boulter, D., (1975). Control of storage protein metabolism in the cotyledons of germinating mung beans: role of
endopeptidase. Plant Physiology, 55, 1031-1037.
[20] Bewley, D. J., & Black, M., (1978) Physiology and biochemistry of seeds, Berlin: Springer-Verlag.
[21] Wanasundara, P. K. J. P. D., Shahidi, F., & Brosnan, M. E., (1999). Changes in flax (Linum usitatissmum) seed nitrogenous compounds
during germination. Food Chemistry, 65, 289-295.
[22] Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P., (2005).
Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. Journal of Food Science, 70
(8), M375-M381.
[23] Li, G. -H., Wan, J. -Z., Le, G. -W., & Shi, Y. H., (2006). Novel angiotensin I-converting enzyme inhibitory peptides isolated from
alcalase hydrolysate of mung bean protein. Journal of Peptide Science,
12, 509-514.
[24] Yust, M. M., Pedroche, J., Giron-Calle, J., Alaiz, M., Millan, F., & Vioque, J., (2003). Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chemistry, 81, 363-369.
[25] Bamdad, F., Dokhani, Sh., & Keramat, J. (2008). Legume proteins; a
novel source of peptide inhibitors of angiotensin-I-converting enzyme.
Journal of Clinical Biochemistry and Nutrition, Supple. 43, 1-5.
[26] Vermeirssen, V., Van Camp, J., Decroos, K., van Wijmelbeke, L., &
Verstraete, W., (2003). The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and whey protein. Journal of Dairy Science, 86, 429-438.
[27] Rozan, P., Kuo, Y. H., & Lambein, F., (2001). Amino acids in seeds and
seedlings of the genus Lens. Phytochemistry, 58, 281-289.
[28] Bhatty, R. S., & Christison, G. I., (1984). Composition and nutritional
quality of pea (Pisum sativum L.), faba bean (Vicia faba L. spp. minor) and lentil (Lens culinaris Medik.) meals, protein concentrates and
isolates. Plant Foods for Human Nutrition, 34, 41-51.
[29] Bamdad, F., Goli, A. H., & Kadivar, M. (2006). Preparation and
characterization of proteinous film from lentil (Lens culinaris); edible
film from lentil (Lens culinaris). Food Research International, 39, 106-111.
[30] AOAC (1990). Official methods of analysis of the Association of
Official Analytical Chemists (15th ed.). Arlington, VA: Association of
Analytical Chemists.
[31] Pedroche, J., Yust, M. M., Giron-Calle, J., Alaiz, M., Millan, F., & Vioque, J., (2002). Utilization of chickpea protein isolates for production
of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. Journal of Science of Food and Agriculture, 82, 960-965.
[32] Gauthier, S. F., Vachon, C., & Savoie, L., (1986). Enzymatic conditions
of an in vitro method to study protein digestion. Journal of Food Science, 51, 960-964.
[33] Nielsen, P. M., Petersen, D., & Dambmann, C., (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66 (5), 642-646.
[34] Church, F. C., waisgood, H. E., Porter, D. H., & Catignani, G. L., (1983). Spectrophotometric assay using o-hthaldialdehyde for
determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66, 1219-1227.
[35] Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. New
York: Elsevier Applied Science Publishers.
[36] Periago, M. J., Ros, G., Martinez, C., & Rincon, F., (1996). Variations
of non-protein nitrogen in six Spanish legumes according to the extraction methor used. Food Research International, 29 (5-6), 489-494.
[37] Hayakari, M., Kondo, Y., & Izumi, H., (1978). A rapid and simple
spectrophotometric assay of angiotensin-converting enzyme. Analytical
Biochemistry, 84, 361-369.
[38] Li, G. -H., Liu, H., Shi, Y. -H., and Le, G. -W., (2005). Direct spectrophotometric measurement of angiotensin I-converting enzyme
inhibitory activity for screening bioactive peptides. Journal of Pharmceutical and Biomedical Analysis, 37, 219-224.
[39] Laemmli, U.K., (1970). Cleavage of structural proteins during assembly
of the head of bacteriophage T4. Nature, 227, 680-685.
[40] Copeland, R. A., (1994). Methods for protein analysis. New York:Chapman and Hall.
[41] Black, M., & Bewley, J. D., (2000). Seed technology and its biological
basis, Boca Raton: CRC Press.
[42] Guo, M. R., Fox, P. F., Flynn, A., & Kindstedt, P. S., (1995).
Susceptibility of ╬▒-lactoglobulin and sodium caseinate to proteolysis by
pepsin and trypsin. Journal of Dairy Science, 78, 2336-
2344.
[43] Mullally, M., Meisel, H., & FitzGerald, R. J., (1997). Angiotensin-1-
converting enzyme inhibitory activities of gastric and pancreatic
proteinase digests of whey proteins. International Dairy Journal, 7, 299-303.
[44] Sangronis, E., & Machado, C. J., (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT
Journal of Science and Technology, 40, 116-120.
[45] Sangronis, E., Rodríguez, M., Cava, R., & Torres, A., (2006). Protein
quality of germinated Phaseolus vulgaris. European Food Research and
Technology, 222, 144-148.
[46] Ramakrishna, V., & Ramakrishna Rao, P., (2005). Purification of acidic
protease from the cotyledons of germinating Indian bean (Dolichoslablab L. var lignosus) seeds. African Journal of Biotechnology, 4 (7),703-707.
[47] Marcone, M. F., (1999). Biochemical and biophysical properties of plant
storage proteins: a current understanding with emphasis on 11S seed
globulins. Food Research International, 32, 79-92.
[48] M├╝ntz, K., (1996). Proteases and proteolytic cleavage of storage proteins
in developing and germinating dicotyledonous seeds. Journal of
Experimental Botany, 47, 605-622.
[49] Zakharov, A., Carchilan, M., Stepurina, T., Rotari, V., Wilson, K., & Vaintraub, I., (2004). A comparative study of the role of the major
proteinases of germinated common bean (Phaseolus vulgaris L.) and
soybean (Glycine max (L.) Merrill) seeds in the degradation of their
storage proteins. Journal of Experimental Botany, 55 (406), 2241-2249.
[50] Nielsen, S. S., Deshpande, S. S., Hermodson, M. A., & Scott, M. P., (1988). Comparative digestibility of legume storage proteins. Journal of
Agriculture and Food Chemistry, 36, 896-902.
[51] Kinsella, J. E., Whitehead, D. M., (1989). Proteins in whey: chemical,
physical and functional properties. Advances in Food and Nutrition
Research, 33, 343-346.
[52] Koyoro, H., & Powers, J. R., (1987). Functional properties of pea
globulin fractions. Cereal Chemistry, 64 (2), 97-101.
[53] Deshpande, S. S., & Nielsen, S. S., (1987). In vitro enzymatic hydrolysis
of phaseolin, the major storage protein of Phaseolus Vulgharis L.
Journal of Food Science, 52 (5), 1326-1329.
[54] Duranti, M., Gatehouse, J. A., Boulter, D., & Cerletti, P., (1987). In vitro
proteolytic processing of pea and jack bean storage proteins by an endo
protease from lupin seeds. Phytochemistry, 26 (3), 627-631.
[55] Nielsen, S. S., & Liener, I. E., (1984). Degradation of major storage
protein of Phaseolus vulgaris during germination. Plant Physiology, 74, 494-498.
[56] Hsu, D. L., Leung, H. K., Morad, M. M., Finney, P. L., & Leung, C. T.,
(1982). Effect of germination on electrophoretic, functional and bread baking properties of yellow pea, lentil and faba bean protein isolates. Cereal Chemistry, 59 (5), 344-350.
[57] Vermeirssen, V., Van Camp, J., & Verstraete, W., (2005). Fractionation
of angiotensin I converting enzyme inhibitory activity from pea and whey protein in vitro gastrointestinal digests. Journal of Science of Food
and Agriculture, 85, 399-405.
[58] Pihlanto-Leppala, A., Koskinen, P., Piilola, K., Tupasela, T. &
Korhonen, H., (2000). Angiotensin I-converting enzyme inhibitory
properties of whey protein digests: concentration and characterization of
active peptides. Journal of Dairy Research, 67, 53-64.
[59] Lo, W. M. Y., Farnworth, E. R., & Li-chan, E. C. Y., (2006). Angiotensin I-converting enzyme inhibitory activity of soy protein
digests in a dynamic model system simulating the upper gastrointestinal tract. Journal of Food Science, 71 (3), S231-S237.
[60] Meisel, H., (1998). Overview on milk protein-derived peptides.
International Dairy Journal, 8 (5/6), 363-373.
[61] Nelson, D. L., & Cox, M. M., (2000). Amino acids, peptides, and
proteins. In Lehninger principles of biochemistry, (3rd ed.) (pp. 115-158). New York: Worth Publishers.
[62] Pripp, A. H., Isaksson, T., & Stepaniak, L., (2004). Quantitative structure-activity relationship modeling of ACE-inhibitory peptides
derived from milk proteins. European Food Research and Technology, 219, 579-83.
[63] Vermeirssen, V., van der Bent, A., Van Camp, J., van Amerongen, A., &
Verstraete, W., (2004). A quantitative in silico analysis calculates angiotensin I converting enzyme (ACE) inhibitory activity in pea and
whey protein digests. Biochimie, 86, 231-239.
[64] Maeno, M., Yamamoto, N., & Takano, T., (1996). Identification of an
antihypertensive peptide from casein hydrolysate produced by a
proteinase from Lactobacillus helveticus CP790. Journal of Dairy Science, 79, 1316-1321.
[65] Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y., & Itoh, T. (1998).
Structural analysis of new antihypertensive peptides derived from cheese
whey protein by proteinase K digestion. Journal of Dairy Science, 81,3131-3138.
[66] Urbano, G., L├│pez-Jurado, M., Frejnagel, S., G├│mez-Villalva, E.,
Porres, J. M., Frías, J., Vidal-Valverde, C., & Aranda, P. (2005).Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition,
21, 230-239.