A New Scheme for Improving the Quality of Service in Heterogeneous Wireless Network for Data Stream Sending

In this paper, we first consider the quality of service problems in heterogeneous wireless networks for sending the video data, which their problem of being real-time is pronounced. At last, we present a method for ensuring the end-to-end quality of service at application layer level for adaptable sending of the video data at heterogeneous wireless networks. To do this, mechanism in different layers has been used. We have used the stop mechanism, the adaptation mechanism and the graceful degrade at the application layer, the multi-level congestion feedback mechanism in the network layer and connection cutting off decision mechanism in the link layer. At the end, the presented method and the achieved improvement is simulated and presented in the NS-2 software.

Selecting Materialized Views Using Two-Phase Optimization with Multiple View Processing Plan

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance cost. Therefore, in this paper, we introduce a new approach aimed at solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that our method provides a further improvement in term of query processing cost and view maintenance cost.

Simulation Games in Business Process Management Education

Business process management (BPM) has become widely accepted within business community as a means for improving business performance. However, it is of the highest importance to incorporate BPM as part of the curriculum at the university level education in order to achieve the appropriate acceptance of the method. Goal of the paper is to determine the current state of education in business process management (BPM) at the Croatian universities and abroad. It investigates the applied forms of instruction and teaching methods and gives several proposals for BPM courses improvement. Since majority of undergraduate and postgraduate students have limited understanding of business processes and lack of any practical experience, there is a need for introducing new teaching approaches. Therefore, we offer some suggestions for further improvement, among which the introduction of simulation games environment in BPM education is strongly recommended.

Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites

Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.

An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique

The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.

Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network

Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.

An Introduction to Methods and Technologies Applied for Reduction of Energy Consumption in Transportation Sector and Air Pollution in Iran

In Iran, due to abundance of energy resources, energy consumption is extraordinarily higher than international standards and transportation sector is considered to be one of the major consumers of energy. Moreover, air pollution in urban areas as a result of high dependence on private vehicle and lower standards of vehicles, high subsidies spent on fuel and time waste due to traffic congestion in urban areas all have led to speculations on new strategies and policies in order to control energy consumption in transportation sector. These strategies and policies will be introduced in this paper and their consequences will be analyzed with consideration to socio-economic factors affecting the urban society of Iran. Besides, the intention is to suggest and analyze new approaches such as broader application of public transportation system, demand management in transport sector, replacement of deteriorated vehicles, quality improvement in car manufacture and introduction of substitute fuels.

Detecting Remote Protein Evolutionary Relationships via String Scoring Method

The amount of the information being churned out by the field of biology has jumped manifold and now requires the extensive use of computer techniques for the management of this information. The predominance of biological information such as protein sequence similarity in the biological information sea is key information for detecting protein evolutionary relationship. Protein sequence similarity typically implies homology, which in turn may imply structural and functional similarities. In this work, we propose, a learning method for detecting remote protein homology. The proposed method uses a transformation that converts protein sequence into fixed-dimensional representative feature vectors. Each feature vector records the sensitivity of a protein sequence to a set of amino acids substrings generated from the protein sequences of interest. These features are then used in conjunction with support vector machines for the detection of the protein remote homology. The proposed method is tested and evaluated on two different benchmark protein datasets and it-s able to deliver improvements over most of the existing homology detection methods.

The Effect of Confinement Shapes on Over-Reinforced HSC Beams

High strength concrete (HSC) provides high strength but lower ductility than normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. On the other hand, when designing reinforced concrete beams, designers have to limit the amount of tensile reinforcement to prevent the brittle failure of concrete. Therefore the full potential of the use of steel reinforcement can not be achieved. This paper presents the idea of confining concrete in the compression zone so that the HSC will be in a state of triaxial compression, which leads to improvements in strength and ductility. Five beams made of HSC were cast and tested. The cross section of the beams was 200×300 mm, with a length of 4 m and a clear span of 3.6 m subjected to four-point loading, with emphasis placed on the midspan deflection. The first beam served as a reference beam. The remaining beams had different tensile reinforcement and the confinement shapes were changed to gauge their effectiveness in improving the strength and ductility of the beams. The compressive strength of the concrete was 85 MPa and the tensile strength of the steel was 500 MPa and for the stirrups and helixes was 250 MPa. Results of testing the five beams proved that placing helixes with different diameters as a variable parameter in the compression zone of reinforced concrete beams improve their strength and ductility.

Spread Spectrum Image Watermarking for Secured Multimedia Data Communication

Digital watermarking is a way to provide the facility of secure multimedia data communication besides its copyright protection approach. The Spread Spectrum modulation principle is widely used in digital watermarking to satisfy the robustness of multimedia signals against various signal-processing operations. Several SS watermarking algorithms have been proposed for multimedia signals but very few works have discussed on the issues responsible for secure data communication and its robustness improvement. The current paper has critically analyzed few such factors namely properties of spreading codes, proper signal decomposition suitable for data embedding, security provided by the key, successive bit cancellation method applied at decoder which have greater impact on the detection reliability, secure communication of significant signal under camouflage of insignificant signals etc. Based on the analysis, robust SS watermarking scheme for secure data communication is proposed in wavelet domain and improvement in secure communication and robustness performance is reported through experimental results. The reported result also shows improvement in visual and statistical invisibility of the hidden data.

Payment Problems, Cash Flow and Profitability of Construction Project: A System Dynamics Model

The ubiquitous payment problems within construction industry of China are notoriously hard to be resolved, thus lead to a series of impacts to the industry chain. Among of them, the most direct result is affecting the normal operation of contractors negatively. A wealth of research has already discussed reasons of the payment problems by introducing a number of possible improvement strategies. But the causalities of these problems are still far from harsh reality. In this paper, the authors propose a model for cash flow system of construction projects by introducing System Dynamics techniques to explore causal facets of the payment problem. The effects of payment arrears on both cash flow and profitability of project are simulated into four scenarios by using data from real projects. Simulating results show visible clues to help contractors quantitatively determining the consequences for the construction project that arise from payment delay.

The Effects of Bolt Spacing on Composite Shear Wall Behavior

Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.

Influence of Ti, B, and Sr on Microstructure, Mechanical and Tribological Properties of as Cast, Cast Aged, and Forge Aged A356 Alloy – A Comparative Study

In the present work, a comparative study on the microstructure and mechanical properties of as cast, cast aged and forged aged A356 alloy has been investigated. The study reveals that mechanical properties of A356 alloy are highly influenced by melt treatment and solid state processing. Cast aged alloys achieve highest strength and hardness compared to as cast and forge aged ones. Ones treated with combined addition of grain refiners and modifiers achieve maximum strength and hardness. Cast aged A356 alloy possesses higher wear resistance compared to as cast and forge aged ones. Forging improves both strength and ductility of alloys over as cast ones. However, the improvement in ductility is perceptible only for properly grain refined and modified alloys. Ones refined with 0.65% Al-3Ti shows highest improvement in ductility while ones treated with 0.20% Al-10Sr exhibits less improvement in ductility.

Selective Intra Prediction Mode Decision for H.264/AVC Encoders

H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.

Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms

The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.

Distributed Generator Placement for Loss Reduction and Improvement in Reliability

Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.

Analyzing Transformation of 1D-Functions for Frequency Domain based Video Classification

In this paper we illuminate a frequency domain based classification method for video scenes. Videos from certain topical areas often contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Assessing main and side frequencies of each repeating movement gives rise to the motion type. We obtain the frequency domain by transforming spatio-temporal motion trajectories. Further on we explain how to compute frequency features for video clips and how to use them for classifying. The focus of the experimental phase is on transforms utilized for our system. By comparing various transforms, experiments show the optimal transform for a motion frequency based approach.

A high Speed 8 Transistor Full Adder Design Using Novel 3 Transistor XOR Gates

The paper proposes the novel design of a 3T XOR gate combining complementary CMOS with pass transistor logic. The design has been compared with earlier proposed 4T and 6T XOR gates and a significant improvement in silicon area and power-delay product has been obtained. An eight transistor full adder has been designed using the proposed three-transistor XOR gate and its performance has been investigated using 0.15um and 0.35um technologies. Compared to the earlier designed 10 transistor full adder, the proposed adder shows a significant improvement in silicon area and power delay product. The whole simulation has been carried out using HSPICE.

Investigation of Heat Loss in Ethanol-Water Distillation Column with Direct Vapour Recompression Heat Pump

Vapour recompression system has been used to enhance reduction in energy consumption and improvement in energy effectiveness of distillation columns. However, the effects of certain parameters have not been taken into consideration. One of such parameters is the column heat loss which has either been assumed to be a certain percent of reboiler heat transfer or negligible. The purpose of this study was to evaluate the heat loss from an ethanol-water vapour recompression distillation column with pressure increase across the compressor (VRCAS) and compare the results obtained and its effect on some parameters in similar system (VRCCS) where the column heat loss has been assumed or neglected. Results show that the heat loss evaluated was higher when compared with that obtained for the column VRCCS. The results also showed that increase in heat loss could have significant effect on the total energy consumption, reboiler heat transfer, the number of trays and energy effectiveness of the column.

A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators

This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.