Grading of Emulsified Agarwood Oil Using Gel Electrophoresis Technique

In this study, encapsulation of agarwood oil with non-ionic surfactant, Tween 80 was prepared at critical micelle concentration of 0.0167 % v/v to produce the most stable nano-emulsion in aqueous. The encapsulation has minimized the bioactive compounds degradation in various pH conditions thus prolong their shelf life and maintained its initial oil grade. The oil grading of the prepared samples were conducted using the gel electrophoresis instead of using common analytical industrial grading such as gas chromatography- mass spectrometry (GC- MS). The grading method was chosen due to their unique zeta potential value after the encapsulation process. This paper demonstrates the feasibility of applying the electrophoresis principles to separate the encapsulated agarwood oil or grading of the emulsified agarwood oil. The results indicated that the grading process are potential to be further investigate based on their droplet size and zeta potential value at various pH condition when the droplet were migrate through polyacrylamide gel.

Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment

This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.

Thermal Technologies Applications for Soil Remediation

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria

This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them.

Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar are 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Temporal Variation of PM10-Bound Benzo(a)pyrene Concentration in an Urban and a Rural Site of Northwestern Hungary

The main objective of this study was to assess the annual concentration and seasonal variation of benzo(a)pyrene (BaP) associated with PM10 in an urban site of Győr and in a rural site of Sarród in the sampling period of 2008–2012. A total of 280 PM10 aerosol samples were collected in each sampling site and analyzed for BaP by gas chromatography method. The BaP concentrations ranged from undetected to 8 ng/m3 with the mean value of 1.01 ng/m3 in the sampling site of Győr, and from undetected to 4.07 ng/m3 with the mean value of 0.52 ng/m3 in the sampling site of Sarród, respectively. Relatively higher concentrations of BaP were detected in samples collected in both sampling sites in the heating seasons compared with non-heating periods. The annual mean BaP concentrations were comparable with the published data of different other Hungarian sites.

Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GCMS), capillary GC with flame-ionization detection, Compound Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (- 198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Detection of Lard in Binary Animal Fats and Vegetable Oils Mixtures and in Some Commercial Processed Foods

Animal fats (camel, sheep, goat, rabbit and chicken) and vegetable oils (corn, sunflower, palm oil and olive oil) were substituted with different proportions (1, 5, 10 and 20%) of lard. Fatty acid composition in TG and 2-MG were determined using lipase hydrolysis and gas chromatography before and after adulteration. Results indicated that, genuine lard had a high proportion (60.97%) of the total palmitic acid at 2-MG. However, it was 8.70%, 16.40%, 11.38%, 10.57%, 29.97 and 8.97% for camel, beef, sheep, goat, rabbit and chicken, respectively. It could be noticed also the position-2-MG is mostly occupied by unsaturated fatty acids among all tested fats except lard. Vegetable oils (corn, sunflower, palm oil and olive oil) revealed that the levels of palmitic acid esterifies at 2-MG position was 6.84, 1.43, 9.86 and 1.70%, respectively. It could be observed also the studied oils had a higher level of unsaturated fatty acids in the same position, compared with animal fats under investigation. Moreover, palmitic acid esterifies at 2-MG and PAEF increased gradually as the substituted levels increased among all tested fat and oil samples. Statistical analysis showed that the PAEF correlated well with lard level. The detection of lard in some commercial processed foods (5 French fries, 4 Butter fats, 5 processed meat and 6 candy samples) was carried out. Results revealed that 2 samples of French fries and 4 samples of processed meat contained lard due to their higher PAEF, while butter fat and candy were free of lard.

Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTATGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Heavy Metals and Polycyclic Aromatic Hydrocarbons in Roadside Soil Samples: A Review

Diverse contaminants released into the environment through progress of urbanization and industrialization adversely affect human health. Among various sources of contaminants, especially, in big cities, automobiles play a significant role in aggravating the pollution. Various pollutants viz., heavy metals (Pb, Mn, Ni, Zn, As, Hg, Cd) and Polyaromatic hydrocarbons (Benzo-a-pyrene, fluoranthene, pyrene, benzo-b-anthracene, benzo-b-fluoranthene, acenaphthylene, fluorine, phenantherene, anthracene, chrysene, benzo-k-fluoranthene, benzo-e-pyrene, indenol-1,2,3-cd-pyrene, dibenzo-a,h-anthracene, benzo-ghi-perylene) are released by vehicles. Further, these pollutants are expected to cause severe mutagenic, genotoxic and carcinogenic effects. Considering this, many authors monitored the levels of pollution in roadside soil, water and plants. The present review focuses upon the analysis and effects of heavy metals and polycyclic aromatic hydrocarbons from the roadside samples.

Residue and Ecological Risk Assessment of Polybrominated Diphenyl Ethers (PBDEs) in Sediment from CauBay River, Vietnam

This research presents the first comprehensive survey of congener profiles (7 indicator congeners) of polybrominated diphenyl ethers (PBDEs) in sediment samples covering ten sites in CauBay River, Vietnam. Chemical analyses were carried out in gas chromatography–mass spectrometry (GC–MS) for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the sediment with ∑7 PBDE values ranging from 8.93 to 25.64ng g−1, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. PBDEs had rare risks in the sediment of studied area.  However, due to the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority. 

Transesterification of Jojoba Oil-Wax Using Microwave Technique

Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in Egypt and in some parts of the world. The main uses of jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil-wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis.

BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this directon, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Synthesis and Foam Power of New Biodegradable Surfactant

This work deals with the synthesis and the determination of some surface properties of a new anionic surfactant belonging to sulfonamide derivatives. The interest in this new surfactant is that its behavior in aqueous solution is interesting both from a fundamental and a practice point of view. Indeed, it is well known that this kind of surfactant leads to the formation of bilayer structures, and the microstructures obtained have applications in various fields, ranging from cosmetics to detergents, to biological systems such as cell membranes and bioreactors. The surfactant synthesized from pure n-alkane by photosulfochlorination and derivatized using N-ethanol amine is a mixture of position isomers. These compounds have been analyzed by Gas Chromatography coupled to Mass Spectrometry by Electron Impact mode (GC -MS/IE), and IR. The surface tension measurements were carried out, leading to the determination of the critical micelle concentration (CMC), surface excess and the area occupied per molecule at the interface. The foaming power has also been determined by Bartsch method, and the results have been compared to those of commercial surfactants. The stability of the foam formed has also been evaluated. These compounds show good foaming power characterized in most cases by dry foam.

Hydrolysis of Eicchornia crassipes and Egeria densa for Ethanol Production by Yeasts Isolated from Colombian Lake Fúquene

The aquatic plants are a promising renewable energy resource. Lake Fúquene polluting macrophytes, water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.), were saccharifiedby different treatments and fermented to ethanol by native yeasts. Among the tested chemical and biological methods for the saccharification, Pleurotus ostreatus at 10% (m/v) was chosen as the best pre-treatment in both macrophytes (P

Fatty Acids Derivatives and Steroidal Saponins: Abundance in the Resistant Date Palm to Fusarium oxysporum f. sp. albedinis, Causal Agent of Bayoud Disease

Takerbucht is the only cultivar of date palm known as being resistant to the bayoud disease, caused by Fusarium oxysporum f. sp. albedinis (F.o.a.). In the aim to understand more about the defense mechanisms implied, we realized phytochemical analyses of this cultivar leaflets and roots and this, for the first time, using gas chromatography-mass spectrometry (GC-MS).The examination of our results shows that fifty-four molecules have been detected, fourteen of which are common to leaflets and roots. This study revealed also the organs' richness in derivatives fatty acids: both saturated and unsaturated are represented mainly by methyl esters of Hexadecanoic and 9,12,15-Octadecatrienoic acids. 1-Dodecanethiol, derivative Dodecanoic acid is only present in roots. It’s of great interest to note that the screening revealed the steroidal saponins abundance, among which Yamogenin acetate and Diosgenin, exclusively detected in Takerbucht. They may play an essential role, in the date palm resistance to the bayoud disease.

Use Cuticular Hydrocarbons as Chemotaxonomic of The Pamphagidae Pamphagus elephas (Insecta, Orthoptera) of Algeria

The cuticular hydrocarbons of Pamphagus elephas (Orthoptera: Pamphagidae) has been analysed by gas chromatography and by combined gas chromatograph-mass spectrometry. The following hydrocarbon classes have been identified in insect cuticular hydrocarbons are: n-alkanes and methylalkanes comprising Monomethyl-, dimethyl-and trimethylalkanes. Sexual dimorphism is observed in long chain alkanes (C24-C36) present on male and female. The cuticulars hydrocarbons of P.elephas ranged from 24 to 36 carbons and incluted n-alkanes, Dimethylalkanes and Trimethylalkanes. nalkanes represented by (C24-C36,72,7% on male and 79,2% on female), internally branched Monomethylalkanes identified were (C25, C30-C32,C35-C37;11% on male and 9,4% on female), Dimethylalkanes detected are (C31-C32, C36; 2,2% on male and 2,06% on female) and Trimethylalkanes detected are (C32, C36; 3,1% on male and 4, 97 on female). Larvae male and female (stage 7) showed the same quality of n-alkanes observed in adults. However a difference quantity is noted.

Optimization of the Headspace Solid-Phase Microextraction Gas Chromatography for Volatile Compounds Determination in Phytophthora Cinnamomi Rands

Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/ Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means of

Static Headspace GC Method for Aldehydes Determination in Different Food Matrices

Aldehydes as secondary lipid oxidation products are highly specific to the oxidative degradation of particular polyunsaturated fatty acids present in foods. Gas chromatographic analysis of those volatile compounds has been widely used for monitoring of the deterioration of food products. Developed static headspace gas chromatography method using flame ionization detector (SHS GC FID) was applied to monitor the aldehydes present in processed foods such as bakery, meat and confectionary products. Five selected aldehydes were determined in samples without any sample preparation, except grinding for bakery and meat products. SHS–GC analysis allows the separation of propanal, pentanal, hexanal, heptanal and octanal, within 15min. Aldehydes were quantified in fresh and stored samples, and the obtained range of aldehydes in crackers was 1.62±0.05 – 9.95±0.05mg/kg, in sausages 6.62±0.46 – 39.16±0.39mg/kg; and in cocoa spread cream 0.48±0.01 – 1.13±0.02mg/kg. Referring to the obtained results, the following can be concluded, proposed method is suitable for different types of samples, content of aldehydes varies depending on the type of a sample, and differs in fresh and stored samples of the same type.

A Study on Flammability of Bio Oil Combustible Vapour Mixtures

Study of fire and explosion is very important mainly in oil and gas industries due to several accidents which have been reported in the past and present. In this work, we have investigated the flammability of bio oil vapour mixtures. This mixture may contribute to fire during the storage and transportation process. Bio oil sample derived from Palm Kernell shell was analysed using Gas Chromatography Mass Spectrometry (GC-MS) to examine the composition of the sample. Mole fractions of 12 selected components in the liquid phase were obtained from the GC-FID data and used to calculate mole fractions of components in the gas phase via modified Raoult-s law. Lower Flammability Limits (LFLs) and Upper Flammability Limits (UFLs) for individual components were obtained from published literature. However, stoichiometric concentration method was used to calculate the flammability limits of some components which their flammability limit values are not available in the literature. The LFL and UFL values for the mixture were calculated using the Le Chatelier equation. The LFLmix and UFLmix values were used to construct a flammability diagram and subsequently used to determine the flammability of the mixture. The findings of this study can be used to propose suitable inherently safer method to prevent the flammable mixture from occurring and to minimizing the loss of properties, business, and life due to fire accidents in bio oil productions.